• Title/Summary/Keyword: 고온조건

Search Result 1,873, Processing Time 0.043 seconds

A Study on the Effect of Fluidizing Media on the N2O Production in Fluidized Bed Incineration of Sewage Sludge (하수슬러지 유동층 소각에서 유동매체가 N2O 발생에 미치는 영향에 관한 연구)

  • Park, Jong-Ju;Lee, Seung-Jae;Ryu, In-Soo;Jeon, Sang Goo;Park, Yeong-Sung;Moon, Seung-Hyun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.390-397
    • /
    • 2014
  • This study was performed to investigate the effects of fluidizing media on $N_2O$ production in fluidized bed incineration of sewage sludge. The fluidized media were prepared in a form of 2 mm bead by mixing zeolite powders in our lab. Sand having 0.4 mm of the mean size showed 0.44 m/s of minimum fluidization velocity ($U_{mf}$), while the prepared zeolite media 0.5 m/s. When the ratio of fluidizing media height to the inside diameter of the incinerator (bed aspect ratio) increased from 1.4 to 3.1, it was found that $U_{mf}$ of the zeolite media was varied from 0.5 m/s to 0.7 m/s. Under the operation conditions in 1.79 of excess air ratio, $909^{\circ}C$ of bed temperature and ca. 1.65 m/s of superficial velocity, as the weight of fluidizing meadia was increased, $O_2$ concentration in the flue gas was slightly decreased, and $CO_2$ increased. Above 6 kg of fluidizing media weight (1.98 of bed aspect ratio), it was observed that $N_2O$ concentration was significantly reduced, which might result from the decomposition of $N_2O$ on the zeolite media rather than transformation of $N_2O$ to NOx. On the other hand, in a variation of the zeolite media mixing ratio to sand and bed temperature at a constant total bed height, significant difference was exhibited in $N_2O$ emission concentration according to the temperature. Considering the operation temperature in the incineration, the effective calcination temperature of the zeolite media was suggested to be around $900^{\circ}C$.

Quality Characteristics of Rough Rice during Low Temperature Drying (저온건조 중 벼의 품질 특성)

  • Kim, Hoon;Han, Jae-Woong
    • Food Science and Preservation
    • /
    • v.16 no.5
    • /
    • pp.650-655
    • /
    • 2009
  • This study was conducted to measure the quality characteristics of rough rice during low temperature drying by using an experimental dryer and heat pump with a capacity of 150kg at four temperature levels of 20, 30, 40, and $50^{\circ}C$. The quality and proper drying temperature of rough rice was investigated by measuring variations in moisture content, crack rates, germination rates and cooked rice. Temperatures over $40^{\circ}C$ is considered a high-temperature area, and below $40^{\circ}C$ is considered a low-temperature area. The drying rates were 0.3, 0.6, 0.9, and 1.3%/hr, and the crack ratios were 0, 1.6, 6.8, and 24.2% at the drying temperatures of 20, 30, 40, and $50^{\circ}C$, respectively, which showed that the higher the drying temperature was, the higher the drying rate and crack rate was. Therefore, 20 and $30^{\circ}C$ were found to be appropriate drying temperatures for avoiding crack formation, and $50^{\circ}C$ was inappropriate. At $40^{\circ}C$, the operation methods needed to be modified to limit cracking, such as increasing the tempering time. Also, as the drying temperature increased, the germination rate decreased. Germination rates at 20 and $30^{\circ}C$ were suitable for using the rough rice as a seed, and those at 40 and $50^{\circ}C$ were over 80%, which is the minimum allowable percentage. In the sensory evaluation of cooked rice, the quality of appearance, taste, and texture varied as a function of drying temperature. When considering these factors, the cooked rice that was dried at 20 and $30^{\circ}C$ was better than the cooked rice dried at high-temperature. Consequently, in view of drying temperature and rates, the best conditions for drying rough rice were below $30^{\circ}C$ and below 0.6%/hr.

Banded and Massive Iron Mineralization in Chungju Mine(I): Geology and Ore Petrography of Iron Ore Deposits (충주지역 호상 및 괴상 철광상의 성인에 관한 연구(I) : 지질 및 광석의 산출특성)

  • Kim, Gun-Soo;Park, Maeng-Eon;Enjoji, Mamoru
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.523-535
    • /
    • 1994
  • The strata-bound type iron ore bodies in the Chungju mine are interbedded with metamorphic rocks which are intruded by Mesozoic granitic rocks. The iron ore deposit occurs as layer or lens shape which are concordant with the metamorphic rocks. The iron ore is classified into banded and massive types based on the mode of texture and occurrence. Grain size and iron-oxides tend to become coarser toward massive ore than banded ore. Banded ores commonly contain internal layers defined by alternating magnetite- rich, hematite-rich, magnetite-hematite, and quartz-rich mesobands. The banded iron ore consists of hematite, magnetite, quartz, feldspar, and minor amounts of biotite, muscovite, chlorite, carbonates, epidote, allanite, and zircon. Massive ores which are characterized by high magnetite content occur in contact of granitic rocks. The massive iron ores consist mostly of magnetite and quartz, with minor amounts of hematite, pyrite, microcline, biotite, muscovite, chlorite, carbonates, epidote, allanite and zircon. Magnetite from banded and massive ores is almost pure $Fe_3O_4$ in composition, including 0.14 to 0.27 wt.% MnO and 0.10 to 0.15 wt.% MnO, respectively. Hematite of the ore contains 0.87 to 1.27 wt.% $TiO_2$ in banded ore and 3.44 to 6.96 wt.% $TiO_2$ in massive ore, respectively. Biotite shows a little compositional variation depending on ore types. Biotite of the banded ore has lower FeO, $TiO_2$ and $Al_2O_3$, and higher MgO and $SiO_2$ than the massive ore. The modes of occurrence and petrography of ore implies that massive ores might have been formed either under more reducing environments or higher temperature condition than banded ore. Banded ores might represent early episode of iron enrichment due to regional metamorphism. Massive ores might be related to the contact metamorphism resulting from late granitic intrusion.

  • PDF

Wind-and Rain-induced Variations of Water Column Structures and Dispersal Pattern of Suspended Particulate Matter (SPM) in Marian Cove, the South Shetland Islands, West Antarctica during the Austral Summer 2000 (서남극 남 쉐틀랜드 군도 마리안 소만에서 바람 및 강수에 의한 여름철 수층 구조의 변화와 부유물질 분산)

  • 유규철;윤호일;오재경;강천윤;김예동;배성호
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.357-368
    • /
    • 2003
  • Time-series CTDT (Conductivity/Temperature/Depth/Transmissivity) were obtained at one point near tidewater glacier of Marian Cove (King George Islands, Antarctica) to present water column properties and SPM (suspended particulate matter) dispersal pattern in relation with tide, current, meteorological data, and SPM concentration. Four layers were divided from the water column characteristics measured in the interval of an hour for about 2 days: 1) cold, fresh, and turbid surface mixed layer between 0-20 m in water depth, 2) warm, saline, and relatively clean Maxwell Bay inflow between 20-40 m in water depth, 3) turbid/cold tongue of subglacial discharges compared with the ambient waters between 40-70 m in water depth, and 4) cold, saline, and clean bottom water beneath 70 m in water depth. Surface plume, turbid freshwater at coastal/cliff area in late summer (early February), had the characteristic temperature and SPM concentration according to morphology, glacial condition, and composition of sediments. The restrict dispersion only over the input source of meltwater discharges was due to calm wether condition. Due to strong wind-induced surface turbulence, fresh and turbid surface plume, englacial upwelling cold water, glacier-contact meltwater, and Maxwell Bay inflow was mixing at ice-proximal zone and the consequent mixed layer deepened at the surface. Large amount of precipitation, the major controlling factor for increasing short-term glacial discharges, was accompanied by the apparent development of subglacial discharge that resulted in the rapid drop of salinity below the mid depth. Although amount of subglacial discharge and englacial upwelling may be large, however, their low SPM concentration would have small influence on bottom deposition of terrigenous sediments.

Effect of Mixed Pasture Using Domestic Varieties Orchardgrass 'Kodione' and Tall fescue 'Purumi' on Forage Yields and Botanical Composition in Middle Region of Korea (중부지역에서 국내육성 목초 오차드그라스 '코디원' 및 톨 페스큐 '푸르미' 이용 초지조성 혼파조합별 사초생산성 및 식생에 미치는 영향)

  • Hwang, Tae-Young;Ji, Hee Chung;Kim, Ki Yong;Lee, Sang-Hoon;Lee, Ki-Won;Choi, Gi Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.2
    • /
    • pp.89-97
    • /
    • 2016
  • This study was carried out to determine the effect of mixed pasture using domestic varieties orchardgrass 'Kodione' and tall fescue 'Purumi' on forage yields and botanical composition from 2013 to 2015 in middle region of Korea. The following mixed pastures were used in this study: treatment A (orchardgrass oriented mixture with imported varieties), treatment B (orchardgrass oriented mixture), treatment C (orchardgrass and tall fescue oriented mixture), treatment D (tall fescue oriented mixture), treatment E (tall fescue oriented mixture without orchardgrass), treatment F (only orchardgrass), and treatment G (only tall fescue). In botanical compositions at last cutting time in 2015, treatment A had orchardgrass at 7.1%, tall fescue at 47.9%, kentucky bluegrass at 15.2% and white clover at 25%. Meanwhile, treatment B had orchardgrass at 25.9%, tall fescue at 47.0%, kentucky bluegrass at 4.9% and white clover at 18.3%. Consequentially, in botanical composition from 2014 to 2015, treatment A was changed more compare to other treatments B, C, D and E. The average of dry matter (DM) yield for 2 years of treatment E (18,369 kg/ha) was the highest among the seven treatments, but there was no significant difference among other treatments except treatment A (p>0.05). The crude protein (CP) and in vitro dry matter digestibility (IVDMD) of treatment A were 14.5% and 74.8%, and treatment E were 14.1% and 73.0%, respectively. The content of neutral detergent fiber (NDF) and acid detergent fiber (ADF) were lower in treatment E and A than other treatments, and treatment E showed high content of total digestible nutrient (TDN). Therefore, tall fescue oriented mixture using domestic tall fescue variety Purumi had good forage productivity, quality and botanical composition in middle region of Korea for the establishment of grassland.

Effects of Die Temperature and CO2 Injection on Physical Properties and Antioxidant Activity of Extruded Rice with Tomato Flour (사출구 온도와 CO2 주입이 쌀·토마토 압출성형물의 물리적 특성 및 항산화 활성에 미치는 영향)

  • An, Sang-Hee;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.6
    • /
    • pp.912-920
    • /
    • 2015
  • The study was designed to investigate the effects of die temperature and $CO_2$ injection on the physical and antioxidant properties of extruded rice with tomato flour. Moisture content and screw speed were fixed at 25% and 150 rpm, respectively. Die temperatures and $CO_2$ injection were adjusted to 80, 110, and $140^{\circ}C$ and 0, and 300 mL/min, respectively. Specific mechanical energy input decreased as die temperature increased from 80 to $140^{\circ}C$. The expansion index increased, while bulk density decreased with $CO_2$ injection. All extrudates showed increased water soluble index (WSI) and water absorption index through the extrusion process. WSI increased as die temperature increased. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and total phenolic compounds increased as die temperature increased from 80 to $140^{\circ}C$. Total carotenoid and lycopene contents decreased through the extrusion process. Total carotenoid and lycopene contents upon 0 mL/min $CO_2$ injection and $140^{\circ}C$ die temperature were highest at $6.65{\mu}g/g$ and 2.69 mg/kg, respectively. In conclusion, $CO_2$ injection affects expansion properties while an increased die temperature leads to increased DPPH radical scavenging activity and total phenols.

Assessment of Productivity and Vulnerability of Climate Impacts of Forage Corn (Kwangpyeongok) Due to Climate Change in Central Korea (국내 중부지역에 있어서 기후변화에 따른 사료용 옥수수의 생산성 및 기후영향취약성 평가)

  • Chung, Sang Uk;Sung, Si Heung;Zhang, Qi-Man;Jung, Jeong Sung;Oh, Mirae;Yun, Yeong Sik;Seong, Hye Jin;Moon, Sang Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.2
    • /
    • pp.105-113
    • /
    • 2019
  • A two-year study was conducted from 2017 to 2018 by the establishment of a test field at Chungju-si and Cheongyang-gun. Plant height, number of leaves, insects and diseases, and fresh and dry matter yields for corn hybrid('Kwangpyeongok') were investigated. Daily average, maximum, and minimum temperature, monthly average temperature, daily precipitation, and sunshine duration during the growing season were investigated. We selected climate-critical factors to corn productivity and conducted an evaluation of vulnerability to climate change from 1999 to 2018 for both regions. In 2018, the dry matter yield of forage corn was 6,475 and 7,511 kg/ha in Chungju and Cheongyang, respectively, which was half of that in 2017. The high temperature and drought phenomenon in the 2018 summer caused the corn yield to be low. As well as temperature, precipitation is an important climatic factor in corn production. As a result of climate impact vulnerability assessment, the vulnerability has increased recently compared to the past. It is anticipated that if the high temperature phenomenon and drought caused by climate change continues, a damage in corn production will occur.

The Effects of Increased Temperature on Seed Nutrition, Protein, and Oil Contents of Soybean [Glycine max (L.)] (온도 상승에 따른 콩 종실의 무기영양과 단백질 및 지방 함량 평가)

  • Lee, Yun-Ho;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyong;Baek, Jae-Kyeong;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.4
    • /
    • pp.331-337
    • /
    • 2018
  • The content of nutrients, proteins, and oils of crop seeds is affected by global climate change due to the increase in temperature. Information regarding the effects of increased temperature on soybean seed nutrition is limited despite its vital role in seed quality and food security. The objective of this study was to determine the effect of increasing temperature on seed nutrient, protein, and oil content in two soybean [Glycine max (L.) Merr] cultivars (Daewonkong and Pungsannamulkong during the reproductive period in a temperature-gradient chamber. Four temperature treatments, Ta (near ambient temperature), $Ta+1^{\circ}C$ (ambient temperature+$1^{\circ}C$), $Ta+2^{\circ}C$ (ambient temperature+$2^{\circ}C$), $Ta+3^{\circ}C$ (ambient temperature+$3^{\circ}C$), and $Ta+4^{\circ}C$ (ambient temperature+$4^{\circ}C$), were established by dividing the rows along the temperature gradient. At maturity, increased temperature did not significantly affect the concentration of P, K, Ca, and Mg. The protein and oil content was significantly correlated with temperature. At maturity, the protein content of DWK and PSNK was reduced at $Ta+4^{\circ}C$. The oil content was the highest at $Ta+4^{\circ}C$ in DWK, whereas it decreased in PSNK at $Ta+4^{\circ}C$. Consequently, the biochemical composition of soybean seeds changed with the increase in temperature. These results illustrate the effects of temperature on soybean seed nutrient, protein, and oil content, which can help improve soybean quality at different temperatures. Thus, the biochemical composition of crop seeds can be changed in accordance with nutritional requirements for the benefit of human health in the future.

Characteristics of New Ever-bearing Strawberry 'Bokha' Bred for Tropical and Subtropical zone Cultivation (열대 및 아열대 지역 재배용 사계성 딸기 '복하' 육성)

  • Lee, Jong Nam;Kim, Hye Jin;Choi, Mi Ja;Suh, Jong Taek;Nam, Jung Hwan;Hong, Su Young;Kim, Su Jeong;Shon, Hwang Bae;Kim, Ki Deog;Kim, Yul Ho
    • Journal of the Korean Society of International Agriculture
    • /
    • v.30 no.4
    • /
    • pp.300-304
    • /
    • 2018
  • 'Bokha' is a new strawberry (Fragaria x ananassa Duch.) cultivar, which was released by the Highland Agriculture Research Institute in 2016. The 'Bokha' cultivar originated from a cross between 'Goha' and 'Saebong No. 3' that showed excellent ever-bearing characteristics, including continuous flowering habit and high soluble-solids contents under long-day and high temperature conditions in 2011. This cultivar was initially named 'Saebong No. 8' after examining its characteristics and productivity in summer culture from 2013 to 2015. After regional adaptability tests in 2016, 'Bokha' was selected from Saebong No. 8 as an elite cultivar. The general characteristics of 'Bokha' include semispreading type, elliptical leaves, and moderately vigorous growth. The fruits are conical in shape, and red in color. 'Bokha' plants have 32.7 leaves, 9.9 more than 'Goha' plants. The soluble-solids content of 'Bokha' was 9.2%, which was 0.2% higher than that of 'Goha'. The average fruit weight of 'Bokha' was about 9.5g and the marketable yield was $27,701kg{\cdot}ha^{-1}$, 72% higher than 'Goha'. 'Bokha' is suitable for tropical and subtropical zone cultivation as a high soluble solids contents cultivar, because it shows continuous flowering habit under long-day and high temperature conditions.

Detection of flash drought using evaporative stress index in South Korea (증발스트레스지수를 활용한 국내 돌발가뭄 감지)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Mark, D. Svoboda;Brian, D. Wardlow
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.577-587
    • /
    • 2021
  • Drought is generally considered to be a natural disaster caused by accumulated water shortages over a long period of time, taking months or years and slowly occurring. However, climate change has led to rapid changes in weather and environmental factors that directly affect agriculture, and extreme weather conditions have led to an increase in the frequency of rapidly developing droughts within weeks to months. This phenomenon is defined as 'Flash Drought', which is caused by an increase in surface temperature over a relatively short period of time and abnormally low and rapidly decreasing soil moisture. The detection and analysis of flash drought is essential because it has a significant impact on agriculture and natural ecosystems, and its impacts are associated with agricultural drought impacts. In South Korea, there is no clear definition of flash drought, so the purpose of this study is to identify and analyze its characteristics. In this study, flash drought detection condition was presented based on the satellite-derived drought index Evaporative Stress Index (ESI) from 2014 to 2018. ESI is used as an early warning indicator for rapidly-occurring flash drought a short period of time due to its similar relationship with reduced soil moisture content, lack of precipitation, increased evaporative demand due to low humidity, high temperature, and strong winds. The flash droughts were analyzed using hydrometeorological characteristics by comparing Standardized Precipitation Index (SPI), soil moisture, maximum temperature, relative humidity, wind speed, and precipitation. The correlation was analyzed based on the 8 weeks prior to the occurrence of the flash drought, and in most cases, a high correlation of 0.8(-0.8) or higher(lower) was expressed for ESI and SPI, soil moisture, and maximum temperature.