• Title/Summary/Keyword: 고온전이

Search Result 607, Processing Time 0.029 seconds

Effects of Using Cold Water on Mixing Sawdust Media for Flammulina velutipes (고온기 팽이버섯 병재배 배지제조시 저온수 이용 효과)

  • Cheong, Jong-Chun;Jhune, Chang-Sung;Kim, Seung-Hwan;Won, Hang-Yeon;Kwon, Jae-Geon
    • Journal of Mushroom
    • /
    • v.3 no.4
    • /
    • pp.140-144
    • /
    • 2005
  • This study was conducted to verify the cause of suppression symptom in mycelial growth during summer and to be able to establish a countermeasure. Cultivation of Flammulina velutipes was experimented with varying elapsed time of 0, 3, 6, 9 hours after mixing the sawdust media and two kinds of water temperature (normal water, $24^{\circ}C$ and cold water, $6^{\circ}C$) for mixing sawdust media. There were trends of increased media temperature from $24^{\circ}C$ to $31^{\circ}C$ and decreased pH from 6.5 to 5.2~5.6 with varying elapsed time from mixing the media to sterilization. Bacterial density also increased with bacterial density in Medium $24^{\circ}C$ being 1.9~4.1 times higher than that in Medium 6. Growth of F. velutipes was delayed with dual culture of bacteria isolated from sawdust media. Total nitrogen content of sawdust media was lowered by elapsed time from mixing the media to sterilization. The use of normal water($24^{\circ}C$) delayed mushroom growth by 1~2 days compared with that of cold water($6^{\circ}C$). Furthermore, mycelial growth of F. velutipes in the bottle cultivation ceased 9 hours after mixing the media. Primordia formation of F. velutipes was delayed by 1~3 days by elapsed time after mixing sawdust media, while fruit-body yield decreased by 7~12% 6 hours after mixing the media. Fruit-body yield was more stabilized with the use of cold water($6^{\circ}C$) than with that of normal water($24^{\circ}C$). Results showed that it is effective to use cold water as low as $6^{\circ}C$ in mixing media for F. velutipes cultivation, especially during summer when environmental temperature is high, high pressure sterilization after bottling work can prevent bacterial propagation in the media and can stabilize media ingredient.

  • PDF

A Study of Factors Influencing of Temperature according to the Land Cover and Planting Structure in the City Park - A Case Study of Central Park in Bundang-gu, Seongnam - (도시공원의 토지피복 및 식재구조에 따른 온도 영향요인 규명 연구 - 성남시 분당구 중앙공원을 사례로 -)

  • Ki, Kyong-Seok;Han, Bong-Ho;Hur, Ji-Yeon
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.5
    • /
    • pp.801-811
    • /
    • 2012
  • The purpose of this study is to find out how land cover and planting of an urban park influence temperature. Field research on the land cover and planting status was conducted for Bundang Central Park in Sungnam-si. 30 study plots in the site were selected to closely analyze land cover type and planting structure. The temperature was measured 10 times for each plot. Land coverage type, planting type, planting layer structure and green space area (the ratio of green coverage, GVZ) were chosen as factors impacting temperature and statistics were analyzed for the actual temperature measured. Analysis on how the land coverage type influences temperature showed that planting site had a low temperature and that grassland and paved land had a high temperature. When it comes to planting type, the temperature at the land planted with conifers and broad-leaved trees was low, while the temperature at grassland and paved land was high. With regard to planting layer structure, canopy and canopy-underplanting type showed low temperature, while grassland and paved land showed high temperature. An analysis on the relation between green space area and temperature found out that both ratio of green coverage and GVZ had a high level of negative correlation with the temperature measured. According to regression model of green space area and the temperature measured, for every 1% increase in the ratio of green coverage, temperature is expected to lower by $0.002^{\circ}C$. Also, for every $1m^3/m^2$ increase in GVZ, temperature is expected to go down by $0.122^{\circ}C$.

Effect to Material Strength Recovery of Stepped Patch Repair with Epoxy based Particle Reinforced GFRP Composites under Hygrothermal Environment (에폭시 기지 입자 강화 GFRP를 사용한 계단형 패치 보수법이 고온 고습 환경하에서 재료의 물성 회복에 미치는 영향)

  • Jung, Kyung-Seok;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.88-93
    • /
    • 2018
  • In this study, damaged composite laminates were repaired by a stepped patch repair method using halloysite nanotube(HNT) and milled carbon(MC) reinforced composite materials with different amount of the particles. And the mechanical and structural effects of the particles on the interface between the damaged and repair surfaces were analyzed. At this time, after exposing them to a harsh environment of high temperature and humidity for a long time, the recovery rate of the material properties relative to the material forming the damaged plate was compared. As a result, at $70^{\circ}C$ high temperature distilled water, the hygroscopicity of the HNT/GFRP composites was significantly different from that of the MC/GFRP composites. Especially, 0.5, 1 wt. % HNT was added, the moisture absorption rate was the lowest and this was the factor that contributed to the mechanical strength increase. On the other hand, MC showed a high hygroscopic resistance only with a small amount, and the strength was different according to the action direction of the load, and the addition amount was also different.

Change of Chemical and Microbial Properties during Fermentation of Cotton Waste for Oyster Mushroom Cultivation (느타리 재배용 폐면 발효 중의 화학성 및 미생물 상의 변화)

  • Jhune, Chang-Sung;Jang, Kap-Yeul;Cho, Soo-Muk;Oh, Se-Jong;Park, Jung-Sik;Weon, Hang-Yeon
    • The Korean Journal of Mycology
    • /
    • v.32 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • The changes of microflora and chemical characteristics during fermentation process of cotton waste for oyster mushroom cultivation were investigated with 5 l bench-scale reactors placed in an incubator at different temperatures ($40,\;50\;and\;60^{\circ}C$). Cotton waste was wetted to 70% moisture, and air flow rates to the substrate were 50, 100 and 300 cc/min. In processing of composting, the mesophilic bacterial population decreased sharply but thermophilic bacterial population increased. In case of fungi, both mesophilic and thermophilic population decreased. The daily $CO_2$ evolution showed little difference in all treatments, while $NH_3$ dropped sharply after 3 days. The desirable composting temperature and air flow based on the mycelial growth of oyster mushroom were $50^{\circ}C$ and 100 cc/min, respectively.

Evaluation Techniques for Residual Structural Performance of a Reinforced Concrete slab under Fire Damage (화재 피해를 입은 철근콘크리트 슬래브의 잔존 구조성능 평가기법)

  • Choi, Kwang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.588-594
    • /
    • 2020
  • This study proposes non-destructive rebound-hardness and ultrasonic testing methods to more accurately evaluate the residual structural performance of reinforced concrete structures in a fire. Techniques are also proposed to assess the stiffness used in the deflection calculation with natural frequencies obtained by vibration tests. In the compressive strength evaluation using rebound hardness, the residual compressive strength of thick specimens and a larger water/cement (W/C) ratio were shown to be large. The homogeneity of concrete at high temperature compared to ambient temperature conditions was assessed by the velocity of ultrasonic waves that penetrate the concrete, and it followed W/C or thickness of slab makes little different results. To assess the stiffness of fire-damaged slabs and increase in deflection, the natural frequency was measured by vibration tests and incorporated into the equation of the stiffness. The application of this technique to the slab experiment showed that it can be a very reasonable evaluation technique. In addition, to evaluate the residual strength of a member after fire, a test of the strength of a component was carried out during and after heating.

Development of rotor overlay welding process (로타 오버레이 용접공정 개발)

  • Lee, Kyong-Woon;Kim, Dong-Jin;Kang, Sung-Tae
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.12-12
    • /
    • 2009
  • 터빈에서 핵심부품인 로터는 블레이드를 원심 운동시키는 대형 단조강이며, 고압의 증기 조건에서 고속회전하며 고온에서 운전과 저온에서 과속시험 동안 높은 원심력을 받는다. 또한 기동/정지 천이 동안 열응력을 받기 때문에, 이러한 운전조건에 부합되는 소재로서는 높은 Creep 강도 및 피로강도를 가지는 CrMoV type의 강종이 사용되어져 왔다. 발전소의 대용량화 및 고온화에 따라 종래의 증기조건에서 사용되어져 왔던 1%CrMoV강은 내산화성 및 내부식성이 문제가 되어 더 이상 사용이 불가하며, 고온/고압하에서도 우수한 소재 특성을 가지는 12%Cr강의 사용이 필수적이다. 그러나 12%Cr강으로 제작되는 로타는 Cr 양이 높기 때문에 저널부에 Galling 또는 Scuffing 이라 불리는 부적절한 마모현상과 사용 중 소착이 발생하기 쉬운 단점이 있기 때문에, 저널부에 Cr 함유량 2~3% 이하의 저합금강을 오버레이 용접하여 육성하는 일체형 가공구조의 로타 저널부가 주목되어 왔다. 따라서 본 연구에서는 Large scale 로타가 용접 도중 급열 및 급냉이 되지 않으면서 균일한 온도로 일정 시간 유지할 수 있는 열관리 장치 개발, 최적 오버레이 용접조건 선정 및 용접부 건전성 시험 평가를 통하여 12%Cr 로타 저널부의 최적 오버레이 용접공정을 확립하고자 하였다. 용접 열관리 장치는 전기저항 가열방식을 적용하고 있으며 용접이 최종 완료되기 전까지 로타 제품 전체는 $93^{\circ}C$이상의 온도로 유지 되어져야 하며, 규정 용접후열처리 온도는 $650^{\circ}C{\pm}14^{\circ}C$ 이다. 또한 로타 오버레이 용접은 모재 Set up $\Rightarrow$ 용접예열 $\Rightarrow$ GTA용접 $\Rightarrow$ SA용접 $\Rightarrow$ 용접후열(Post heating) $\Rightarrow$ 용접후열처리(PWHT) $\Rightarrow$ 정삭가공 $\Rightarrow$ NDE(UT) 순으로 수행 되어진다 실제 로타의 1/3 Scale로 시험편을 제작하여, 오버레이 mockup 시험을 수행한 후 화학성분, 경도 분포, 인장강도, 충격인성 및 굽힘시험을 수행한 결과, 오버레이 용접에서 요구되어지는 용접 물성값을 만족하는 것으로 확인되었다. 또한 균열 등의 선형 결함이나 기공, 슬라그 혼입과 같은 결함은 관찰되지 않았으며, 용접 시 아크의 안정성과 슬라그의 박리성은 양호하였으며 비드의 외관도 미려하여 용접 작업성도 양호하였다.

  • PDF

Co2+ Adsorption Characteristics of Al2O3-TiO2 Composite Oxide Prepared by Hydrolysis of Metal Alkoxide (금속 알콕사이드의 가수분해법으로 제조한 Al2O3-TiO2 복합옥사이드의 Co2+ 흡착 특성에 관한 연구)

  • Ryu, Jae-Chun;Yang, Hyun-Soo;Kim, Yu-Hwan;Sung, Ki-Woung;Kim, Yong-Ik
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1192-1203
    • /
    • 1996
  • $Al_2O_3-TiO_2$ composite oxide adsorbents which could be applied in high-temperature water were prepared by hydrolysis of aluminum and titanium alkoxide. The prepared adsorbents were calcined at $600{\sim}1400^{\circ}C$ and in order to investigate the various properties - the transition of crystals, thermal properties, and specific surface area, X-ray diffractometry, thermal analysis, FT-IR, SEM and BET method were employed. And the $Co^{2+}$ adsorption characteristics of these adsorbents in high-temperature water were investigated by batch adsorption experiment in a stirred autoclave. Since the adsorption of $Co^{2+}$ on the $Al_2O_3-TiO_2$ adsorbents was irreversible endothermic in the temperature range of $150{\sim}250^{\circ}C$, the standard enthalpy changes of 26, 43, and 80 mol% of $TiO_2$ on $Al_2O_3$ were in the range of $16.5{\sim}26.0kJ{\cdot}mol^{-1}$. The adsorbent of 26 mol% of $TiO_2$ on $Al_2O_3$ which was calcined at $600^{\circ}C$ for 2 hours showed the adsorption amount of $0.1674meq{\cdot}g^{-1}$ in the high temperature water at $250^{\circ}C$.

  • PDF

Effect of High-Humidity and High Temperature at Kentucky Bluegrass Growth in Summer (하절기 한지형 잔디 재배 시 침수 및 고온으로 인한 잔디의 생육 불량 현상)

  • Lee, Jeong-Ho;Choi, Jun-Yong;Lee, Song-Ho;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • The growth of root and shoot normally decline dramatically in mid-summer of Korea, moreover the cool-season turfgrassgrass eventually wither to death over $30^{\circ}C$. The increase of air temperature also drives the heat of soil, that makes stress on root system. The heat stress affects physiological mechanisms of hormonal unbalance that stimulates shoot growth, photosynthesis, and transpiration. To solve those problems, many studies have been carried out to control soil moisture and OM content to decrease soil temperature for dissolving the growth retardant by heat stress. This study initiated to analyze the change of soil temperature with soil moisture, and the effect of soil depth and moisture content on heat transmit and thermal changes on turfgrass growth(productivity, green color, and damage by dryness and high temperature). Kentucky bluegrass plots prepared with 25%, 33%, 40% soil moisture treatments. Soil temperature was measured every five min. with four thermo-sensors at 12 and 2 cm soil depth. The most acceptable growth showed at 33% soil moisture, but the worst result showed at 40%. The soil moisture seriously affected on the growth of Kentucky bluegrass, however the quality of turfgrass may acceptable if we can control soil moisture down to 33% when the flooding season of monsoon.

Growth and Yield of Barley as affected by Accumulated Temperature (보리 생육기간중 적산온도가 생육 및 수량에 미치는 영향)

  • 구본철;이춘우;이춘기;김재철;박문웅
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.6
    • /
    • pp.468-472
    • /
    • 2001
  • In order to know the relationship between the accumulated temperature distribution and barley growth characteristics, average, early and late heading years were analyzed. Among 24 year's crop situation test 1976, 1979, 1989, 1990, 1998 were sorted to early heading years and 1977, 1980, 1984, 1996 to late heading years. About $650^{\circ}C$ of accumulated temperature from October to December was enough to get average year's heading date in barley. While 62$0^{\circ}C$ of accumulated temperature were not enough for average heading, 67$0^{\circ}C$ of accumulated temperature accelerated barley heading. 78$0^{\circ}C$ of accumulated temperature from October to February, were enough to get average year's heading date in barley. while $650^{\circ}C$ of accumulated temperature were not enough to, 78$0^{\circ}C$ of accumulated temperature accelerated barley heading. Temperature pattern types in early heading years were distinguished by three types : high temperature type before winter(I), high temperature type in winter-regrowth stage(II), high temperature type in tillering stage(III). On the other hands, temperature pattern types in late heading years were divided to two types : low temperature type in winter-regrowth stage(I), low temperature type in tillering stage(II). Barley heading was mainly influenced by temperature before winter and winter-regrowth stage. Yields of early heading years were higher than that of late heading years and yield was heavily influenced by the number of spikes per square meter.

  • PDF

Characterization of Water Absorption by CFRP Using Air-Coupled Ultrasonic Testing (공기결합 초음파탐상에 의한 CFRP 복합재의 흡습 특성 평가)

  • Lee, Joo-Min;Lee, Joo-Sung;Kim, Yong-Kwon;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.155-164
    • /
    • 2014
  • Carbon-fiber-reinforced plastic (CFRP) composites are increasingly being used in a variety of industry applications, such as aircraft, automobiles, and ships because of their high specific stiffness and high specific strength. Aircraft are exposed to high temperatures and high humidity for a long duration during flights. CFRP materials of the aircraft can absorb water, which could decrease the adhesion strength of these materials and cause their volumes to change with variation in internal stress. Therefore, it is necessary to estimate the characteristics of CFRP composites under actual conditions from the viewpoint of aircraft safety. In this study air-coupled ultrasonic testing (ACUT) was applied to the evaluation of water absorption properties of CFRP composites. CFRP specimens were fabricated and immersed in distilled water at $75^{\circ}C$ for 30, 60, and 120 days, after which their ultrasonic images were obtained by ACUT. The water absorption properties were determined by quantitatively analyzing the changes in ultrasonic signals. Further, shear strength was applied to the specimens to verify the changes in their mechanical properties for water absorption.