• Title/Summary/Keyword: 고에너지 레이저

Search Result 114, Processing Time 0.018 seconds

Fabrication of VOx/Graphene Composite Using CO2 Laser Reduction and Atomic Layer Deposition and Its Electrochemical Performance (CO2 레이저 환원법과 원자층 증착법을 이용한 VOx/Graphene 복합체 제조 및 전기화학적 성능 평가)

  • Park, Yong-Jin;Kim, Jae-Hyun;Lee, Kyubock;Lee, Seung-Mo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.135-141
    • /
    • 2020
  • Although the graphene is regarded as a promising material for the electrode of the supercapacitor, its electrochemical performance is still less enough to satisfy the current demand raised in real applications. Here, using a home laser engraver, firstly we performed the prompt and selective reduction of the graphene oxide to produce multilayered and highly porous graphene maintaining high electrical conductivity. Subsequently, the resulting graphene was conformally deposited with pseudocapacitive thin VOx using atomic layer deposition in order to enhance specific capacitance of graphene. We observed that various forms of VOx exist in the VOx/graphene hybrid through XPS analysis. The hybrid showed highly improved specific capacitance (~189 F/g) as compared to the graphene without VOx. We expect that our approach is accepted as one of the alternatives to produce the graphene-based electrode for various energy storage devices.

Study on the Composition and Crystallization of TiNi Thin Films Fabricated by Pulsed Laser Deposition in Ambient Ar Gas (Ar가스 분위기에서 PLD방법으로 제작된 TiNi박막의 조성 및 결정성에 관한 연구)

  • Cha, J.O.;Shin, C.H.;Yeo, S.J.;Ahn, J.S.;Nam, T.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.116-121
    • /
    • 2007
  • TiNi shape memory alloy(SMA) was fabricated by PLD(plused laser deposition) using equiatomic TiNi target. Composition and crystallization of TiNi thin films which were fabricated in ambient Ar gas(200m Torr)and vacuum($5{\times}10^{-6}\;Torr$) were investigated. Composition of TiNi thin films was characterized by energy-dispersive X-ray spectrometry (EDXS) and crystallization was confirmed by X-ray diffraction (XRD). The composition of films depends on the distance between target and substrate but does not sensitively depend on the substrate temperature. It is found that the composition of films can be easily controlled when substrate is placed inside plume in ambient Ar gas. It is also found that the in situ crystallization temperature ($ca.\;400^{\circ}C$) in ambient Ar gas is lowered in comparison with that of TiNi film prepared under vacuum. The low crystallization temperature in ambient Ar gas makes it possible to prepare the crystalline TiNi thin film without contamination.

Cavity-type Beam Position Monitors for Future Accelerators (차세대 가속기용 공동형 빔위치 측정기 개발)

  • Kim S.H.;Park Y.J.;Hwang W.H.;Huang J.Y.;Honda Y.;Inoue Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.331-337
    • /
    • 2006
  • Cavity-type beam position monitors were developed in collaboration with KEK to use for the future accelerators such as international linear collider (ILC) or x-ray free electron laser (XFEL) in PAL. BPM components such as BPM cavity, beam tubes, waveguides and feedthroughs were assembled by brazing at the same time to reduce mechanical errors during the fabrication. There are four screwed pins around outer rim of the cavity for the tuning of cavity frequency and x-y isolation. The resonance frequency of BPM is 6.422 GHz, the inner diameter of cavity is 53.822 mm, and the range of mechanical adjusting is $+ / - 250{\mu}m$. The x-y isolation was measured better than -40 dB after tuned. Test results of signal forms, x-y isolations, sensitivities are satisfied within requirements for the KEK ATF2 beam line.

Magnetic Properties of Heteroepitaxial $Y_{3}Fe_{5)O_{12}$ Films Grown by a Pulsed Laser Ablation Technique (펄스 레이저 증착기술에 의한 $Y_{3}Fe_{5)O_{12}$ 에피택셜 박막제조)

  • Yang, C.J.;Kim, S.W.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.2
    • /
    • pp.128-133
    • /
    • 1995
  • Yttrium Iron Garnet($Y_{3}Fe_{5)O_{12}$) films have been succsssfully grown on(111)GGG wafer by KrF excimer laser ablation of stoichiometric garnet target at the oxygen partial pressure, $P(O_{2}$, ranging 20 to 500 mTorr. During the deposition of the films the substrate temperature was maintained at $700^{\circ}C$ and the laser beam energy density at $7.75\;J/cm_{2}$. Microstructure, composition and magnetic properties of the films obtained were investigated as a function of oxygen pressure and thickness of the films. Epitaxial films with a dense and a smooth surface were reproducible at a low oxygen pressure. The films of $2.75\;{\mu}$ min thickness deposited at 20 mTorr of $P(O_{2})$ showed $4{\pi}M_{s}$ of 1500 Gauss and $H_{c}$ of 3 Oe after annealing at $800\;^{\circ}C$ for 20 minutes. As-deposited films of $0.8\;\mu\textrm{m}$ in thickness exhibited the $4{\pi}M_{s}$ of 1730 Gauss and $H_{c}$ of 7 Oe. The magnetic properties of the films obtained were almost identical to those of a single crystal YIG.

  • PDF