• 제목/요약/키워드: 고속 활주선

검색결과 31건 처리시간 0.026초

차인 형상에 따른 레저선박의 저항특성에 관한 연구 (A Study on the Resistance Characteristics of Leisure Boat According to Chine Shape)

  • 김주열;최준호;오정근
    • 해양환경안전학회지
    • /
    • 제23권5호
    • /
    • pp.566-573
    • /
    • 2017
  • 고속 활주선에서 차인은 활주자세 변화 뿐 아니라 선체의 균형을 잡아주는 역할을 하며, 저항성능에 큰 영향을 미친다. 그러나 이러한 차인의 설계는 배수량, 선저경사각, 흘수, 선폭 등 다양한 설계 인자들에 영향을 받는 변수로 많은 경험을 필요로 한다. 본 연구에서는 경험식이 아닌 계산을 통해 차인에 대한 설계 시 형상에 대한 기본적인 지침 마련을 목적으로 고속 활주선의 차인의 형상에 따른 저항성능에 대해 계산하였다. 설계는 상용 설계 프로그램인 Yacht-one을 이용하였으며, 유동해석은 상용 해석프로그램인 STAR-CCM+으로 DFBI(Dynamic Fluid Body Interaction)방법을 적용하여 수행하였다. 초기 설계 차인 각도인 17도를 기준으로 차인 15도, 차인 16도, 차인 19도로 변경하여 설계 속도인 30노트에서 해석을 수행하였다. 그 결과, trim은 4개의 차인 중 16도가 가장 컸으며, heave는 차인 15도에서 가장 우수하였다. 해석 결과를 봤을 때 저항 측면에서 초기 설계 각도인 차인 17도 보다 차인 16도가 우수함을 보이고 있어 실제 설계 시 초기 설계 각도에서 +2도, -2도의 범위로 계산을 통해 저항 성능과 자세에서 우수한 차인을 선택해야 함을 알 수 있다.

실 해상모형시험을 이용한 고속 활주정의 선형시험기법 기초연구 (A Basic study on the sea model test techniques for high speed Planing Boat)

  • 장동원;박충환;진송한
    • 한국항해항만학회지
    • /
    • 제34권8호
    • /
    • pp.623-628
    • /
    • 2010
  • 현재 모형선을 이용한 선형성능 검증설비는 예인수조와 회류수조 두설비가 주로 이용된다. 이들 설비는 주로 저속 대형선박을 위해 기법들로 소형 고속어선 및 고속레저선박의 저항성능 평가를 수행하기에 전차의 속도와 유속이 목표속도에 미치지 못해 어려움이 존재한다. 따라서 고속 선박의 저항성능 평가를 위해 새로운 기법 정립 연구가 필요하다. 이에 고속선의 저항성능 시험을 위해 실제 해상에서 선박을 이용한 모형시험을 고안하고 측정시스템을 구성하였다. 시스템구성은 총 8개의 파트로 구성되어 있으며, 시스템 검증을 위해 C.W.C에서 저속선의 모형을 이용하여 시험을 수행하여 시스템 적용 가능성을 검증하였다. 또한 실제 해상에서 고속선 모형선을 이용하여 시험을 수행하였으며, 이 결과를 CFD해석 결과와 비교하여 실해상 모형시험 방법의 가능성을 확인 하였다.

고속어선의 저항 및 핏칭 개선장치 개발에 관한 연구 (A study on the development of resistance and pitching improving device for high speed fishing vessel)

  • 이귀주;오훈택
    • 한국해양공학회지
    • /
    • 제11권3호
    • /
    • pp.89-94
    • /
    • 1997
  • In the design of high speed fishing vessel, its hull form has to be decided from a view point of resistance and propulsion performance without negelction of seakeeping characteristics. In spite of many efforts, the performance improvement by hull form itself has its limitations, specially for high speed craft. In this paper, the development of performance of resistance and seakeeping improving appendage for high speed planing hull on behalft of the hull form of fishing vessel has been introduced. The developed appendage verified its effectiveness in the full scale test.

  • PDF

파랑관통형 고속 활주선 실선 성능 분석에 관한 연구 (Study on Sea Trial Analysis of Wave Piercing High Speed Planing Boat)

  • 정우철;이창우;한상천
    • 한국해양공학회지
    • /
    • 제31권5호
    • /
    • pp.335-339
    • /
    • 2017
  • This study investigated the sea trial performance of a wave piercing high speed planing hull (WPH). The bow shape of the boat is sharp, and it has no chine or spray strip like a normal planing boat. The skeg is attached to the bottom of the boat in the longitudinal direction from the bow to the stern. The speed performance was analyzed as the speed dropped in a wave, and the seakeeping performance was compared with that of a planing boat with a similar velocity coefficient by measuring the vertical acceleration of the bow in the wave. The turning circle was compared with Lewandowski's estimation for a planing boat. As a result of this study, it was confirmed that the velocity drop of the developed WPH was not large in a wave, and the vertical acceleration was greatly reduced compared with that of a normal planing boat. The turning circle was somewhat larger than the estimated results for a planing boat, but the overall tendency was the same.

활주선의 하중 및 무게 중심 위치 변화가 항주 자세에 미치는 영향에 대한 연구 (A Study on the Effects of Weight and Center of Gravity of a Planing Craft on Running Attitude)

  • 김동진;이기표;박한솔
    • 대한조선학회논문집
    • /
    • 제46권3호
    • /
    • pp.335-342
    • /
    • 2009
  • Motion characteristics of a planing craft are sensitively changed according to its weight and longitudinal center of gravity. In this paper, planing craft model tests were performed in calm water for various test conditions and Froude numbers. Sinkage and trim were measured to analyze the relations between the attitudes of a planing craft and the weight and center of gravity of it. Theoretical formula for the prediction of the attitudes of a prismatic planing hull was modified so that it can be applied to the prediction of the attitudes of a non-prismatic planing hull, and the calculation results by the modified formula were in good agreements with the experimental data.

고속 활주선 모형 주위의 유동해석 (Flow Analysis around a High-speed Planing Hull Model)

  • 김병남;김우전;유재훈
    • 한국해양공학회지
    • /
    • 제23권4호
    • /
    • pp.38-46
    • /
    • 2009
  • Two sets of numerical simulations were carried out for a planing hull model ship. In the first, the WAVIS 1.4 linear and nonlinear potential solver was utilized with the free support condition, in which the running posture was determined during calculation. The linear and nonlinear potential calculation results showed qualitative agreement in the trim and resistance coefficient with the MOERI towing tank test. However, the nonlinear potential calculation gave better results than the linear method. In the next simulation, Fluent 6.3.26 with a VOF model and the WAVIS 1.4 nonlinear potential solver were used with the given running posture from the measurement carried out in the MOERI towing tank. Fluent with the VOF method had substantially better agreement with model test results than the results from the WAVIS nonlinear potential calculation for the total resistance coefficient, and for the bow and stern wave patterns, in spite of the much greater computational costs. Both methods can be utilized in planing hull design when their limitations are perceived, and the running posture should be predicted correctly.

정면 규칙파 중 활주형 고속선의 운동 응답에 대한 실험적 연구 (An Experimental Study on the Motion Response of a High-Speed Planing Craft in Regular Head Waves)

  • 김동진;이기표;황승현;박한솔
    • 대한조선학회논문집
    • /
    • 제46권4호
    • /
    • pp.373-381
    • /
    • 2009
  • The running attitude of a high-speed planing craft may change significantly depending on its speed in seaway. Other variables that may influence its running attitude are its weight, center of gravity, sea conditions, and so on. In this paper, planing craft model tests were carried out with respect to above variables in SNU towing tank, and vertical motion responses of a planing craft in regular head waves were analyzed. The experimental results in regular waves were compared with those in calm water, and compared with the theoretical estimations. Finally, the effects of running speeds of a planing craft on its motion amplitudes are confirmed.

고속 활주선의 선형에 따른 저항 성능 및 규칙파 중 운동 성능 고찰 (Effects of Hull Form Variations on Resistance and Seakeeping Performance of Planing Hulls with and without Incoming Regular Waves)

  • 김동진;김선영;김성환;서정화;이신형
    • 대한조선학회논문집
    • /
    • 제51권5호
    • /
    • pp.369-379
    • /
    • 2014
  • Planing hull forms have significant influences on those hydrodynamic performances in calm water and in waves. Therefore, the hydrodynamic performance of a planing vessel should be predicted by model tests or theoretical calculations, and be confirmed whether it shows the performance requirements at the design stage. In this study, four planing hull forms are designed with the goal of the improvement of resistance and seakeeping performance, and 1/6.5 scale model tests are carried out in Seoul National University towing tank. The effects of design parameters such as length-to-beam ratio, deadrise angle and forebody shape on the hydrodynamic performance are investigated, based on model test results. Running attitude and resistance of model ships in calm water are also estimated by empirical formulae proposed by Savitsky (1964; 2007; 2012), and compared with the model test results. It is shown that calm water performance of non-prismatic planing hulls can be predicted well by Savitsky (2012)'s formula which improves the original Savitsky(1964/2007)'s formula by taking into account the variations of deadrise angles, and the actual angles between the hull bottom and the free surface.

전산유체계산을 통한 고속 활주선의 저항성능 및 유동분포 해석 (A Study on the Resistance Performance and Flow Pattern of High Speed Planing Hull using CFD)

  • 박규린;김동진;김선영;이신형
    • 대한조선학회논문집
    • /
    • 제56권1호
    • /
    • pp.23-33
    • /
    • 2019
  • Unmanned Surface Vehicle (USV) is being developed to do maritime survey and maritime surveillance at Korea Research Institute of Ships & Ocean engineering (KRISO). The goal is that USV should be operated at the maximum speed of 45 knots and it should be operated at sea state 4. Therefore the planing hull of USV should be excellent in resistance performance and manoeuvring performance. It is needed to check its performance using Experimental Fluid Dynamics (EFD), Computational Fluid Dynamics (CFD) or analytic method before designing the hull. In this study, resistance performance was analyzed by EFD and CFD. EFD with heave and pitch was performed at high speed towing system in Seoul National University. CFD was performed using SNUFOAM based on openFOAM with dynamic mesh to calculate running attitudes. The results of CFD were compared with EFD results. The results of CFD were resistance, running attitudes and wave height. The flow distribution and pressure distribution were also analyzed. The results of numerical resistance was under estimated than EFD. Even though the results of CFD have a slight limitation, it can be successfully used to estimate the resistance performance of planing hull. In addition it can be used as a supplement for EFD results.

정수중을 활주하는 고속선의 6자유도 운동 모델링 및 시뮬레이션 (Modeling and Simulation of the 6 DOF Motion of a High Speed Planing Hull Running in Calm Sea)

  • 윤현규;강남선
    • 대한조선학회논문집
    • /
    • 제53권1호
    • /
    • pp.10-17
    • /
    • 2016
  • When a planing hull straightly runs and turns, its floating position and pitch angle are changed depending on its speed, and large transient motion happens. In this paper, six degrees of freedom(6 DOF) equations of motion, which could simulate the motion of a planing hull, are established. Static and dynamic forces in vertical plane are modeled using pre-calculated displacements and metacentric heights depending on various draft, lift under bottom, and vertical damping coefficients which are used to tune the final motion. Hydrodynamic coefficients in horizontal plane at various equilibrium state are calculated by using Lewandowski's empirical formula and the speed-dependent equilibrium state are calculated beforehand by Savitsky's formula. The speed effects are considered by curve-fitting the coefficients at various speed to the polynomials. Accelerating, decelerating and backing, turning, and zig-zag are simulated and compared with the sea trial results, and it is confirmed that the speed reduction, roll, and pitch during such maneuvers of sea trial and simulation are well consistent.