• Title/Summary/Keyword: 고속 캐비테이션 터널

Search Result 9, Processing Time 0.024 seconds

Characteristics of Cavitation Noise on High-Speed Propellers (고속 프로펠러의 캐비테이션 소음 특성)

  • I.H. Song;J.W. Ahn;K.S. Kim;I.S. Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.22-29
    • /
    • 2000
  • The cavitation noised of high-speed propellers was experimentally studied in KRISO cavitation tunnel. In this paper, a series of cavitation noise tests were carried out for five propellers with various sections and loading distributions. From the experimental results, the noise characteristics of various cavitation pattern and the noise performance of the propellers were analyzed. There can be used for optimum design for high-speed propellers.

  • PDF

Cavitation and Noise Characteristics of High-Speed Propellers with Geometric Variations (고속 프로펠러의 형상변화에 따른 캐비테이션 및 소음 특성)

  • Jong-Woo Ahn;Young-Ha Park;Il-Sung Moon;Ki-Sup Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.23-30
    • /
    • 2001
  • The cavitation noise of high-speed propellers was experimentally studied using new measurement device in KRISO cavitation tunnel. A series of cavitation noise tests were carried out for 6 propellers with various sections, loading distributions, and a different area ratio. From the experimental results, the noise characteristics for various cavitation patterns and the noise performance for a series of propellers were analyzed. These can be used for full-scale prediction study of the noise and optimum design of high-speed propellers.

  • PDF

The Effect of Propeller Skew and Rake on the Fluctuating Pressure (프로펠러 스큐 및 레이크가 변동압력에 미치는 영향)

  • G.I.Choi
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.364-371
    • /
    • 1997
  • 프로펠러 캐비테이션은 선체진동 및 수중소음에 악영향을 끼치는 주요한 원인중의 하나로 생각되어왔다. 그러나 근래 선박의 고속화와 프로펠러 하중의 증가로 캐비테이션이 전혀 없는 프로펠러의 설계개념 적용은 사실상 불가능하다. 고스큐 프로펠러는 기존의 프로펠러와 비교하여 수중소음과 저주파 압력 펄스를 약하게 하는데 유리한 것으로 인식되고 있다. 변동압력에 대하여 프로펠러 스큐와 레이크의 영향을 조사하기 위하여 체계적인 실험을 캐비테이션 터널에서 수행하였으며 본 논문에서는 여러 가지 스큐와 레이크 분포를 갖는 모형 프로펠러에 대한 캐비테이션 관찰시험과 변동압력 계측결과에 대하여 논의하고 토론하였다. 연구 결과 고스큐는 균일류 및 불균일류에서 공히 변동압력 경감에 효ㄱ과가 있음이 확인되었는데 이는 아마도 날개에서의 캐비테이션 안정성에 의한 것으로 예측된다. 그러나 레이크는 날개에서의 캐비티 크기나 거동에 큰 영향을 주지 못하였으며, 변동압력이 또한 거의 같은 수준으로 나타나는 결과를 가져왔다.

  • PDF

Study on Drag Reduction of Hyper-speed Underwater Vehicles (극초고속 수중운동체의 저항감소기법 연구)

  • Ahn, Byoung-Kwon;Lee, Chang-Sup;Kim, Hyoung-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.443-449
    • /
    • 2010
  • Recently underwater systems moving at hyper-speed such as a super-cavitating torpedo have been studied for their practical advantage of the dramatic drag reduction. In this study we are focusing our attention on super-cavitating flows around axisymmetric cavitators. A numerical method based on inviscid flow is developed and the results for several shapes of the cavitator are presented. First using a potential based boundary element method, we find the shape of the cavitator yielding a sufficiently large enough cavity to surround the body. Second, numerical predictions of super-cavity are validated by comparing with experimental observations carried out in a high speed cavitation tunnel at Chungnam National University (CNU CT).

  • PDF

An experimental study on the effect of mass injection location and flow rate for tip vortex cavitation of 3D hydrofoil (수중익 날개 끝 보텍스 캐비테이션 제어를 위한 질량분사 위치 및 분사량 영향에 대한 실험적 연구)

  • Eunsue Hwang;So-Won Jeong;Hongseok Jeong;Hanshin Seol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.233-242
    • /
    • 2023
  • In this paper, the effect of mass injection on the control of tip vortex cavitation was studied experimentally. A mass injection system for a 3D hydrofoil was designed to control the location of injection as well as the injection rate. A series of cavitation tests were carried out in a cavitation tunnel for different injection locations and rates. The cavitation behaviour was observed using a high-speed camera and the corresponding noise was measured using a hydrophone installed in the observation window. The results showed that the tip vortex cavitation was suppressed under certain conditions and the noise was reduced in some frequency bands. It was also found that there is a location where the effect of mass injection could be maximized and hence the noise reduction.

Fundamental Studies for Ventilated Supercavitation Experiments in New High-speed Cavitation Tunnel (신조된 고속 캐비테이션 터널에서 환기 초공동 실험 수행을 위한 기초 연구)

  • Paik, Bu-Geun;Kim, Min-Jae;Jung, Young-Rae;Lee, Seung-Jae;Kim, Kyoung-Youl;Ahn, Jong-Woo;Seol, Han-Shin;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.330-340
    • /
    • 2018
  • In the present works, the High-speed Cavitation Tunnel (HCT) has been designed and manufactured to have the large test section to conduct various supercavitation experiments. The large amount of air ventilated behind a cavitator produces lots of tiny bubbles, which prevent clear observation of supercavitation at the test section. To collect small bubbles effectively, a bubble collecting section of large volume is equipped upstream of the test section. HCT has the test section dimension of $0.3^H{\times}0.3^W{\times}3.0^L\;m^3$ and provides maximum flow speed of 20.4 m/s at the test section. The blockage and Froude effects on the ventilated supercavitation are investigated successfully at the test section. The basic studies such as the supercavitation evolution, drag measurements and cavity shape extraction with air flow rate are also carried out in HCT.

Development of the Driving Pump for the Super-cavitation & High-speed Cavitation Tunnel (초공동 고속 캐비테이션 터널 구동펌프 개발)

  • Ahn, Jong-Woo;Kim, Gun-Do;Paik, Bu-Geun;Kim, Kyoung-Youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.153-160
    • /
    • 2018
  • In order to develop the driving pump for High-speed Cavitation Tunnel(HCT) which can experiment the super-cavitating submerged body, KRISO decided on the pump specification, designed the mixed-flow pump on the basis of the existing pump data and predicted the performance of the design pump using commercial CFD code (CFX-10). After the manufacture and installation of the driving pump, KRISO conducted the trial-test for HCT, analyzed the pump performance and compared trial-test results to those of design stage. The trial-test items for the HCT driving pump are measurements of output current/voltage at the inverter of the driving pump and the flow velocity in the HCT test section. The trial-test results showed the decrease in the flow rate of about 4.6% and the increase in pump head of about 8%, compared with those of the pump prediction. After the trial-test, the performance of the driving pump is predicted using CFX-10 with measured flowrates and pump rotational velocities. Though there is some difference between trial-test and prediction results due to inadequate motor data, it is thought that the tendency is reasonable. It is found that CFX-10 is useful to predict a mixed-flow pump.

Experimental Study on Supercavitated Body with Static Angle-of-attack (정적 받음각을 갖는 초공동화 수중체에 대한 실험적 연구)

  • Lee, Jun-Hee;Paik, Bu-Geun;Kim, Kyoung-Youl;Kim, Min-Jae;Kim, Seonhong;Lee, Seung-Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.541-549
    • /
    • 2019
  • In the present study, we investigated planing forces of supercavitated bodies by using the supercavitation shape produced by the disk type cavitator. The cavity shapes are observed to find the immersion draft and planing angle when the stern of the supercavitated body is partially immersed in the water. To make the planing the angle-of-attack (AOA) of the supercavitated body is varied statically against the main flow and the planing tests are carried out for different body shapes that are changed systematically. The drag, lift and pitch moment acting on the body are measured to understand the relation between the planing force and the immersion draft of the supercavitated body. It is found that the planing force increased in general linearly with the immersion draft ratio and the planing angle is certainly not proportional to the immersion draft ratio.

Flow-Induced Noise Prediction for Submarines (잠수함 형상의 유동소음 해석기법 연구)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seol, Hanshin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.930-938
    • /
    • 2018
  • Underwater noise radiated from submarines is directly related to the probability of being detected by the sonar of an enemy vessel. Therefore, minimizing the noise of a submarine is essential for improving survival outcomes. For modern submarines, as the speed and size of a submarine increase and noise reduction technology is developed, interest in flow noise around the hull has been increasing. In this study, a noise analysis technique was developed to predict flow noise generated around a submarine shape considering the free surface effect. When a submarine is operated near a free surface, turbulence-induced noise due to the turbulence of the flow and bubble noise from breaking waves arise. First, to analyze the flow around a submarine, VOF-based incompressible two-phase flow analysis was performed to derive flow field data and the shape of the free surface around the submarine. Turbulence-induced noise was analyzed by applying permeable FW-H, which is an acoustic analogy technique. Bubble noise was derived through a noise model for breaking waves based on the turbulent kinetic energy distribution results obtained from the CFD results. The analysis method developed was verified by comparison with experimental results for a submarine model measured in a Large Cavitation Tunnel (LCT).