블랑켓 일차벽이나 디버터와 같은 핵융합로 플라즈마 대향부품은 플라즈마로부터 입사되는 중성자 및 입자들을 차폐하여 구조물을 보호하고, 발생열을 에너지로 변환하기 위해 냉각재를 활용한 열제거 기능을 담당한다. 특히, 고속중성자와 입사 열부하 및 여러 입자들로부터 블랑켓 및 내부 구조물을 보호하기 위해 차폐체와 구조물로 구성된다. 세계적으로 차폐체로서는 텅스텐 혹은 텅스텐 합금, 구조물용 재료로는 저방사화 Ferritic Martensitic (FM) 강이 유력한 후보재료로 개발, 연구 중에 있다. 국내에서는 국제핵융합로(ITER) 사업을 통해 고온등방가압(HIP, Hot Isostatic Pressing)을 이용한 이종금속간 접합기술과 한국형 저방사화 고온구조재료인 ARAA (Advanced Reduced Activation Alloy)가 개발되고 있으며, 이를 활용한 설계, 접합법 개발, 제작목업의 건전성 평가 등이 수행되고 있다. 한국원자력연구원에서는 핵융합 기초사업의 일환으로 전북대와 공동으로 수행 중인 건전성 평가체계 개발을 위해, 기 개발된 접합법을 활용한 $45mm(H){\times}45mm(W){\times}2mm(T)$의 W/FM강 목업을 제작한 바 있으며, 이를 국내 구축된 고열부하 시험 장비인 KoHLT-EB (Electron Beam)를 활용한 고열부하 인가 건전성 평가시험을 준비 중에 있다. 이종금속간 접합 특성은 기계적 평가를 위한 파괴시험을 통해 검증, 이를 활용한 목업이 제작되었으며, 제작된 목업에 대한 초음파를 이용한 접합면의 비파괴 검사를 통해 결함이 없음을 확인하였다. 최종적으로 실제 사용되는 핵융합 운전조건과 유사 혹은 가혹한 조건에서 고열부하를 인가하여, 그 건전성을 평가가 이루어질 것이다. 고열부하 시험을 위해서는 냉각조건, 인가 열부하, 수명평가를 통한 반복 고열부하 인가 횟수 등이 사전에 결정되어야 한다. 이를 위해 상업용 열수력, 구조해석 코드인 ANSYS-CFX와 -mechanical을 이용한 시험조건 모의 및 수명 평가가 수행되었다. 구축 장비의 냉각계통을 고려하여 냉각수의 온도 및 속도는 $25^{\circ}C$, 0.15 kg/sec로, 열부하는 0.5 및 $1.0MW/m^2$에 대해 모의를 수행하였다. 정상상태 시 텅스텐의 최대 온도는 각 열부하 조건에 따라 $285.3^{\circ}C$와 $546.8^{\circ}C$였으며, 이에 도달하는 시간을 구하기 위해 천이해석을 수행하였고, 이를 통해 30초에 최대온도 95 %이상의 정상상태 온도에 도달함을 확인하였다. 또한, 목업의 초기 온도에 도달하는 냉각시간도 동일한 천이해석을 통해 30초로 가능함을 확인하였고, 최종 시험 조건을 30초 가열, 30초 냉각으로 결정하였다. 결정된 반복 열부하 인가 조건에서 이종금속 접합체가 받는 다른 열팽창 정도에 따른 응력을 계산하여 목업의 수명을 도출하였고, 이를 시험해야 할 반복 횟수로 결정하였다. 각 열부하 조건에 따른 온도조건을 ANSYS-mechanical 코드를 활용하여 열팽창과 이에 따른 접합면의 응력분포로 계산하였다. 0.5 및 $1.0MW/m^2$에 대해, 목업이 받는 최대 응력은 334.3 MPa와 588.0 MPa 였으며, 이 때 텅스텐과 FM강이 받는 strain을 도출하여 물성치로 알려진 cycle to failure 값을 도출하였다. 열부하에서 예상되는 수명은 0.5 및 $1.0MW/m^2$에 대해, 100,000 사이클 이상과 2,655 사이클로 계산되었으며, 시간적 제약을 고려 최종 평가는 $1.0MW/m^2$에 대해, 3,000사이클 정도의 실험을 통해 그 수명까지 접합건전성이 유지되는 지 실험을 통해 평가할 예정이다.