• Title/Summary/Keyword: 고속충돌

Search Result 312, Processing Time 0.028 seconds

Past Anti-Collision Algorithm in Ubiquitous ID System (Ubiquitous ID 시스템에서 고속 충돌 방지 알고리즘)

  • 차재룡;김재현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8A
    • /
    • pp.942-949
    • /
    • 2004
  • This paper proposes and analyzes the anti-collision algorithm in Ubiquitous ID system. We mathematically compares the performance of the proposed algorithm with that of binary search algorithm, slotted binary tree algorithm using time slot, and bit-by-bit binary tree algorithm proposed by Auto-ID center. We also validated analytic results using OPNET simulation. Based on the analytic results, comparing the proposed algorithm with bit-by-bit algorithm which is the best of existing algorithms, the performance of proposed algorithm is about 5% higher when the number of tags is 20, and 100% higher when the number of tags is 200.

Introduction to an Evaluation Method for Crashworthiness of Korean Tilting Train Express (한국형 고속틸팅열차의 충돌안전도 평가기법 소개)

  • Jung H.S.;Kwon T.S.;Koo J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.318-321
    • /
    • 2005
  • Crashworthy design of a train is a systematic approach to ensure the safety of passengers and crews in railway transportation for the prescribed accident scenarios. This approach needs new structural arrangements and designs to absorb higher levels of impact energy in a controlled manner and interior designs to minimize passenger injuries. In this paper, an evaluation method for crashworthiness of Korean tilting train express is introduced. Crush characteristics for each part of tilting train express are evaluated numerically through 3-dimensional shell element analysis with LS-DYNA. Based on a head-on collision and a level crossing collision scenarios, the crash behaviors of tilting train express are evaluated numerically using full-rake collision simulations.

  • PDF

Evaluation of high-velocity impact welding's interfacial morphology between Cu and CP-Ti using SPH numerical analysis method (SPH 해석기법을 이용한 Cu와 CP-Ti 고속 충돌 접합 단면의 형상학적 평가)

  • Park, Ki Hwan;Kang, Beom Soo;Kim, Jeong
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.34-42
    • /
    • 2019
  • The existence of different thermodynamic properties results in various undesirable effects, such as thermal deformation and residual stress, in heat-welding processes. The solid-state junction, by using explosive or electromagnetic forces, i.e., high-velocity impact welding without employing heat is advantageous in joining materials with different thermodynamic properties. In the solid-state junction, the joining is performed within a short time, a high velocity and large deformations are accompanied by interfacial surfaces. The numerical analysis models play an important role in the understanding of the mechanism of high-velocity impact welding. However, in the analysis of high velocity and large deformations, the conventional Lagrangian method has low reliability due to the occurrence of entanglements. In this study, high-velocity impact welding between Cu and CP-Ti with different thermodynamic properties was performed using a un-gridded numerical method, SPH (Smoothed Particle Hydrodynamics), and interfacial morphology occurred. As a result of the analysis, the interfacial morphology was confirmed and the compared degree of shape (straight, vortex), period, length, and so on appeared differently depending on the relationship between the parameters (impact angle and speed).

High Velocity Impact Analysis of Kevlar29/Phenolic Composite Plate (케블라 복합재 평판의 고속충돌 특성 수치해석)

  • Ahn, Jeoung-Hee;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.18-23
    • /
    • 2009
  • Failure of Kevlar29/Phenolic composite plate under high velocity impact of FSP(Fragment Simulation Projectile) is investigated using a non-linear explicit finite element code, LS-DYNA. Composite laminate and impactor are idealized by solid element and interface between laminas are modeled by tied-break element in LS-DYNA. Interaction between impactor and laminate is simulated face-to-face eroding contact algorithm. When the stress level meets a failure criteria, the layer in the element is eroded. Numerical results are verified by existing test results.

Safety Assessment of Aircraft Crash Accident Into Spent Nuclear Fuel Dry Storage Facility - A Review With Focus on Structural Evaluation (사용후핵연료 건식저장시설의 항공기 충돌 구조안전성평가 연구 현황)

  • Lee, Sanghoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.263-278
    • /
    • 2019
  • Since the 1970s, aircraft crash accidents have been considered as one of the severest external events that should be evaluated for license application of nuclear reactors. After the 9.11 terrorist attacks, many countries have performed safety assessment against intentional or targeted aircraft crashes into nuclear related facilities. In some countries, assessment against targeted aircraft crash was enforced by regulation and considered an important task for license approval. Safety assessment against aircraft crash is a technically difficult task and many countries manage R&D programs to improve its reliability. In this paper, regulations of many countries regarding safety assessment against aircraft crash are summarized, separating regulations for accident aircraft crash and those for targeted aircraft crash. Research performed in various countries on safety assessment of nuclear facility against aircraft crash are summarized, with a focus on spent nuclear fuel dry storage facilities.

Crashworthiness Evaluation of Motorized Trailer of High Speed Train (고속전철 동력객차의 충돌성능평가)

  • Kim, Heon Young;Han, Jae Hyung;Lee, Jong Keun
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.225-232
    • /
    • 1998
  • Train crashes involve complex interaction between deformable bodies in multiple collisions. The purpose of this study is to suggest the effective analytical procedure using finite element model for the crashworthiness of motorized trailer of high speed train. Various types of crash events are investigated and the conditions for numerical simulation are defined. Finally korean high speed train which consists of aluminum members can be analyzed and designed by the numerical simulation.

  • PDF

High Speed Impact and Penetration Analysis using Explicit Finite Element Method (외연 유한요소 기법을 사용한 고속충돌 및 관통해석)

  • Paik, Seung-Hoon;Kim, Seung-Jo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.5-13
    • /
    • 2005
  • The impact of a long-rod penetrator into oblique plates with combined obliquity and yaw is investigated. The study was done using a newly developed three dimensional dynamic and impact analysis code, which uses the explicit finite element method. Through the comparison of simulation result with experimental result and other code's result, the adaptability and accuracy of the developed code is evaluated under the complex situation in which yaw angle and oblique angle exist simultaneously. As a result of comparison, it has found that deformed shape, residual length and velocity, rotational velocity of long-rod show good agreement with experimental data. Through this study, the applicability and accuracy of the code as a metallic armour system design tool is verified.

Fracture Mechanism of Ceramic/Glass-fiber-reinforced-composites Laminate by High Velocity Impact (세라믹/유리섬유강화복합재 적층판의 고속충돌에 의한 파괴거동)

  • Jung Woo-Kyun;Lee Woo-Il;Kim Hee-Jae;Kwon Jeong-Won;Ahn Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.170-176
    • /
    • 2006
  • Multi-layered laminate made of ceramic/composite have been developed to prevent penetration by high velocity impact. In this study, three-layered plates consisted of 1) cover layer (glass fiber reinforced polymer), 2) $Al_{2}O_{3}$, ceramic plate, and 3) backing plate (glass fiber reinforced polymer) were fabricated with various conditions and tested for their ballistic protection characteristic. The ceramic composite laminates, with thin backing plate, were completely penetrated by armor piercing projectile. The plate with inserted rubber between ceramic and backing plate showed excellent ballistic protection, though completely penetrated by the second shoot.

Test and Numerical Analysis for Penetration Residual Velocity of Bullet Considering Failure Strain Uncertainty of Composite Plates (복합판재의 파단 변형률 불확실성을 고려한 탄 관통 잔류속도에 대한 시험 및 수치해석)

  • Cha, Myungseok;Lee, Minhyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.281-288
    • /
    • 2016
  • The ballistic performance data of composite materials is distributed due to material inhomogeneity. In this paper, the uncertainty in residual velocity is obtained experimentally, and a method of predicting it is established numerically for the high-speed impact of a bullet into laminated composites. First, the failure strain distribution was obtained by conducting a tensile test using 10 specimens. Next, a ballistic impact test was carried out for the impact of a fragment-simulating projectile (FSP) bullet with 4ply ([0/90]s) and 8ply ([0/90/0/90]s) glass fiber reinforced plastic (GFRP) plates. Eighteen shots were made at the same impact velocity and the residual velocities were obtained. Finally, simulations were conducted to predict the residual velocities by using the failure strain distributions that were obtained from the tensile test. For this simulation, two impact velocities were chosen at 411.7m/s (4ply) and 592.5m/s (8ply). The simulation results show that the predicted residual velocities are in close agreement with test results. Additionally, the modeling of a composite plate with layered solid elements requires less calculation time than modeling with solid elements.

Measurement of Adiabatic Wall Temperature in Compressible High Speed Impinging jets using Infra-red Camera (적외선 카메라를 이용한 압축성 고속 충돌 제트에서의 단열 벽면 온도 특성 연구)

  • Kim, Beom-Seok;Shin, Sang-Woo;Yu, Man-Sun;Cho, Hyung-Hee;Lee, Jang-Woo;Bae, Ju-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.714-719
    • /
    • 2007
  • In this paper, we report experimental investigations on measurement of adiabatic wall temperature on a flat 2-D plate of high-speed impinging jet made by circular-shape nozzle at steady state condition using infra-red camera. Experiments have been conducted for the Reynolds number of 187,000 according to the change of nozzle-to-plate distance. Dimensionless number, recovery factor, has been used to represent the measured adiabatic wall temperature. And we compared the result obtained by using infra-red camera with that obtained by using thermocouple.