• Title/Summary/Keyword: 고속변형실험

Search Result 97, Processing Time 0.026 seconds

Evaluation of Dynamic Deformation Behaviors in Metallic Materials under High Strain-Rates Using Taylor Bar Impact Test (Taylor 봉 충격시험을 통한 고 변형률속도하 금속재료의 동적변형거동 평가)

  • Bae, Kyung Oh;Shin, Hyung Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.791-799
    • /
    • 2016
  • To ensure the reliability and safety of various mechanical systems in accordance with their high-speed usage, it is necessary to evaluate the dynamic deformation behavior of structural materials under impact load. However, it is not easy to understand the dynamic deformation behavior of the structural materials using experimental methods in the high strain-rate range exceeding $10^4\;s^{-1}$. In this study, the Taylor bar impact test was conducted to investigate the dynamic deformation behavior of metallic materials in the high strain-rate region, using a high-speed photography system. Numerical analysis of the Taylor bar impact test was performed using AUTODYN S/W. The results of the analysis were compared with the experimental results, and the material behavior in the high strain-rate region was discussed.

Dynamic-Elastic Deformation Analysis for Precise Design of High Speed Press Machine (동적 탄성 변형 해석을 통한 고속프레스 정밀도 분석)

  • Kim, Heung-Kyu;Jung, Chul Jae;Cho, Chongdu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.79-88
    • /
    • 2014
  • Enhancing the working speed and positional accuracy of high-speed press machines is essential for improving the parts accuracy and productivity. However it is known that the positional accuracy decreases and the risk of parts failure increases as the working speed of press machine increases. Therefore predicting such problems during the stage of press structure design is necessary for precise design of high-speed press machines. In the present investigation, the dynamic-elastic deformation of press drive module parts with eccentric masses was examined by finite element analysis and experiment. Then the positional accuracy and parts failure of high-speed press machines was evaluated.

Impact Resistance of UHPC Exterior Panels under High Velocity Impact Load (고속충격을 받는 외장 UHPC 패널의 내충격성능)

  • Kang, Thomas H.-K.;Kim, Sang-Hee;Kim, Min-Soo;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.455-462
    • /
    • 2016
  • This experimental study aims to evaluate the impact performance of UHPC exterior panels through high velocity impact tests. The impact performance of UHPC was compared with that of granite in terms of panel thickness, and strain histories were recoded on the rear face of panel specimens. The UHPC turned out to be a good exterior facade material, because the appearance of UHPC is natural enough and impact performance was superior to granite. After colliding, compression pulse reached to the rear face but that pulse was reflected in tension pulse with respect to the free point outside the rear face of the panel. This tension pulse caused the scabbing from the rear side, as the strain histories on the rear face showed three different regions as compression region, steady region and tension region. The shear plug deformation by shear force also was one of the primary reasons for the scabbing based on the observation. Therefore, the scabbing seemed to be affected by both tension and shear forces.

Development of the Strain Measurement-based Impact Force Sensor and Its Application to the Dynamic Brazilian Tension Test of the Rock (변형률 게이지 측정원리를 이용한 충격 하중 센서의 개발 및 암석의 동적 압열 인장 실험에 적용)

  • Min, Gyeong-jo;Oh, Se-wook;Wicaksana, Yudhidya;Jeon, Seok-won;Cho, Sang-ho
    • Explosives and Blasting
    • /
    • v.35 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • In order to obtain the dynamic response behavior of the rock subjected to blasting loading, a shock-proof high sensitivity impact sensor which can measure high frequency dynamic force and strain events should be adopted. Because the impact sensors which uses quartz and piezoelectric element are costly, generally the strain measurement-based impact (SMI) sensors are applied to high speed loading devices. In this study, dynamic Brazilian tension tests of granitic rocks was conducted using the Nonex Rock Cracker (NRC) reaction driven-high speed loading device which adopts SMI sensors. The dynamic response of the granite specimens were monitored and the intermediate strain rate dependency of Brazilian tensile strengths was discussed.

Modification of the integer transform in H.264/AVC for lossless compression (무손실 압축을 위한 H.264/AVC 정수 변환의 변형)

  • Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2254-2260
    • /
    • 2010
  • This papers describes modification of the integer transform used in H.264/AVC in order to efficiently apply to lossless compression. The previous reversible integer transform is not efficient for lossless compression due to large dynamic range of the transform coefficients. To reduce the problem, efficient and reversible integer transforms are proposed. The modified transforms are designed based on the lifting scheme for fast transforms. This paper introduces signal flow graphs for the proposed fast transforms and provides corresponding experimental results. The results indicate that the proposed modified reversible integer transform are superior to the previous transform in terms of lossless compression efficiency.

Finite element analysis and experiment on the formation of adiabatic shear band in 4340 steel (4340강의 단열 전단밴드생성에 대한 유한요소해석 및 실험적 고찰)

  • 정동택;유요한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1134-1143
    • /
    • 1994
  • A study of adiabatic shear band formation and propagation of 4340 steel was done using the stepped speciment which was subjected to high velocity impact. The high velocity impact was performed on compression Hopkinson bar impact machine. After the controlled impact, the specimen was prepared for visual inspection. Numerical simulation was also performed with same geometrical dimension using explicit time integration finite element code. Experimental results were then compared with the numerical prediction. It was found that the numerical prediction is quite accurate, average thickness of adiabatic shear band is about $10{\mu}m$, the macro crack around shoulder is due to folding, and the deformation control ring is effective to freeze the propagation of adiabatic shear band.

Impact Response Behaviors of Laminated Composite Plates Subjected to the Transversely Impact of a Steel Ball (강구에 의한 횡방향 충격을 받는 적층복합판의 충격 응답 거동)

  • 김문생;김남식;박승범;백인환
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.44-56
    • /
    • 1993
  • The purpose of this paper is to analyze the impact response behaviors of glass/epoxy laminated composite plates subjected to the transversely impact of a steel ball. For this purpose, dynamic finite element analysis based on the higher-order shear defomation plate theory is used to compute the contact forces, rebound velocity of a steel ball, and dynamic strain response histories. And low-velocity and high-velocity impact experiments were conducted to compare the results and compute the wave propagation velocities. The results obtained from impact experiments are in good agreement with those of dynamic finite element analysis. Also the wave propagation velocities obtained from high-velocity impact experiments and wave propagation theory agree well, and wave velocities were higher in the smaller radius of steel ball.

  • PDF

Motion Estimation Using Modified Cost Functions (변형된 비용 함수를 이용한 움직임 추정 기법)

  • 조한욱;서정욱;박재홍;정제창
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.111-114
    • /
    • 1997
  • 동영상 압축 알고리즘에서 움직임 추정기법은 매우 중요한 역할을 담당하는 반면, 수행시간이나 하드웨어 구현에 어려움이 많아 이를 개선하기 위한 알고리즘들이 개발되어 왔다. 본 논문에서는 적절한 화소 분류를 통해 우수한 화질과 적은 계산량, 간단한 하드웨어 구조를 가지는 새로운 움직임 추정기법을 제안한다. 기존의 1-비트 화소 분류 방법에서 변형된 새로운 비용 함수를 이용한 2-비트, 3-비트 화소 분류 방법과 2차 비용함수를 이용한 화소 분류 방법을 제안한다. 또한 여러 고속 움직임 추정 알고리즘과도 쉽게 연결하여 사용할 수 있으며 우수한 성능을 나타내는 것을 모의 실험을 통해 보였다.

  • PDF

Fast Image Registration Method Using N-tuple (N-tuple을 이용한 고속 영상 등록 방법)

  • Ko, Min-Sam;Kim, In-Jung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.512-516
    • /
    • 2008
  • 복수의 영상들 간에 존재하는 변형을 빠른 속도로 파악할 수 있는 영상 등록 방법을 제안한다. 제안하는 방법은 문자인식 및 얼굴인식 분야에서 많이 사용되는 N-tuple 방법을 영상 등록에 적용함으로써 영상간 회전 및 이동 상태를 고속으로 파악한다. 또한 특정 특징을 이용하지 않아 영상의 종류에 무관하게 적용할 수 있으며 소수점 화소 단위의 변형도 파악할 수 있다. 실험을 통해 영상 패치를 이용한 영상 등록 방법과 속도 및 정확도를 비교한 결과, 제안하는 방법이 속도와 정확도 면에서 우수함을 보였다.

  • PDF

Acquisition and Verification of Dynamic Compression Properties for SHPB of Woven Type CFRP (Woven Type CFRP의 SHPB에 대한 동적 압축 물성 획득 및 검증)

  • Park, Ki-hwan;Kim, Yeon-bok;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.363-372
    • /
    • 2020
  • Dynamic compressive material properties at high strain rates is essential for improving the reliability of finite element analysis in dynamic environments, such as high-speed collisions and high-speed forming. In general, the dynamic compressive material properties for high strain rates can be obtained through SHPB equipment. In this study, SHPB equipment was used to acquire the dynamic compressive material properties to cope with the collision analysis of Woven tpye CFRP material, which is being recently applied to unmanned aerial vehicles. It is also used as a pulse shaper to secure a constant strain rate for materials with elastic-brittle properties and to improve the reliability of experimental data. In the case of CFRP material, since the anisotropic material has different mechanical properties for each direction, experiments were carried out by fabricating thickness and in-plane specimens. As a result of the SHPB test, in-plane specimens had difficulty in securing data reproducibility and reliability due to fracture of the specimens before reaching a constant strain rate region, whereas in the thickness specimens, the stress consistency of the specimens was excellent. The data reliability is high and a constant strain rate range can be obtained. Through finite element analysis using LS-dyna, it was confirmed that the data measured from the pressure rod were excessively predicted by the deformation of the specimen and the pressure rod.