• Title/Summary/Keyword: 고속발사체

Search Result 47, Processing Time 0.023 seconds

An Experimental Study on Magnus Characteristics of a Spinning Projectile at High Speed Region (회전발사체 마그너스 특성에 관한 고속 유동장 실험연구)

  • Oh, Se-Yoon;Lee, Do-Kwan;Kim, Sung-Cheol;Kim, Sang-Ho;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.385-390
    • /
    • 2011
  • The purpose of this research is to determine the dynamic Magnus effect data of a spinning projectile in wind-tunnel testing. In the present work, the high-speed wind-tunnel tests for the Magnus effect measurements were conducted on a 155-mm spin-stabilized projectile model in the Agency for Defense Development's Tri-Sonic Wind Tunnel at spin rates about 12,000 rpm. The test Mach numbers ranged from 0.7 to 2.0, and the angles of attack ranged from -4 to +10 deg. The validity of the wind-tunnel measurement techniques was evaluated by comparing them with the previous test results on the same configuration. The experimental results show that fair to good agreement is obtained with resonable accuracy.

An Experimental Study on Roll-Damping Characteristics of a Finned Spinning Projectile (회전발사체 미익형상 롤댐핑 특성에 관한 실험연구)

  • Oh, Se-Yoon;Lee, Do-Kwan;Kim, Sung-Cheol;Kim, Sang-Ho;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.894-900
    • /
    • 2012
  • The purpose of this research is to investigate the dynamic roll-damping characteristics of a spin-stabilized projectile in wind-tunnel testing. In the present work, the high-speed wind-tunnel tests for the roll-damping measurements were conducted on a finned spin-stabilized projectile model in the Agency for Defense Development's Trisonic Wind Tunnel at spin rates about 8,000 rpm. The test Mach numbers ranged from 0.6 to 0.9, and the angles of attack ranged from 0 to +15 deg. The evaluation of the bearing friction parameter was also conducted to eliminate the tare damping moment from the aerodynamic damping moment.

Technology Development Prospects and Direction of Reusable Launch Vehicles and Future Propulsion Systems (재사용 발사체 및 미래추진기관 기술발전 전망 및 방향)

  • Kim, Chun Taek;Yang, Inyoung;Lee, Kyungjae;Lee, Yangji
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.686-694
    • /
    • 2016
  • During the Cold War, all space developments were focused on the performance only. However economy becomes more important for space development after the Cold War. There is a growing interest in reusable launch vehicle to secure the economic feasibility. In this paper, technology development prospects and direction of reusable launch vehicles and future propulsion systems of various countries are presented.

Experimental Study on a Two-Stage Light-Gas Gun (2단 경가스총에 대한 실험적 연구)

  • Lee, Jung-Keun;Kim, Heuy-Dong;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.10-15
    • /
    • 2010
  • Light gas guns have a large number of applications in various fields of engineering. A two-stage light-gas gun can produce an extremely high pressure in a very short interval of time. In general, the two-stage light-gas gun is made up of a high pressure tube, a compression tube and a launch tube, each stage being separated by diaphragms. This can be employed efficiently in the application of ultra-high pressure liquid jets. In the present study, experiments are carried out to investigate the projectile velocity and pressure behavior in the tubes according to the pressure changes at the frist diaphragm opening. In the present study result was found that the rupture pressure of the first diaphragm has a dominant influence on piston acceleration.

Basic Design of Propellant Ground Support Equipment and Flame Deflector for KSLV-II Launch Complex (한국형발사체 발사대시스템 추진제공급설비 및 화염유도로 설계)

  • Kang, Sunil;Oh, Hwayoung;Kim, Daerae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.76-86
    • /
    • 2015
  • KSLV-II, a new launch vehicle of Korea, requires a new launch complex(LC) for its own and proper launch operations. The new launch complex will be constructed in NARO Space Center neighboring KSLV-I launch complex for maximizing operation efficiency and economic matters. The launch complex consists of three ground support equipments, i.e., mechanical, electrical, and fuel in general. The fuel ground support equipment could be defined as a combination of systems for storage and supply of propellants and gases which are required by a launch vehicle. The compositions, functions and capabilities of fuel ground support equipment are introduced in this paper. In addition, basic design results of flame deflector configurations are included.

Shape Optimization of Cavitator for a Supercavitating Projectile Underwater (초공동(超空洞) 하의 수중 주행체 캐비테이터 형상최적설계)

  • Choi, Joo-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.82-85
    • /
    • 2008
  • When a projectile travels at high speed underwater, supercavitating flowarises, in which a huge cavity is generated behind the projectile so that only the nose, i.e., the cavitator, of the projectile is wetted, while the rest of it should be surrounded by the cavity. In that case, the projectile can achieve very high speed due to the reduced drag. Furthermore if the nose of the body is shaped properly, the attendant pressure drag can be maintained at a very low value, so that the overall drag is also reduced dramatically. In this study, shape optimization technique is employed to determine the optimum cavitator shape for minimum drag, given certain operating conditions. Simultaneous optimization technique is proposed for efficient cavitator shape optimization, in which the cavity and cavitator shape are determined in a single optimization routine.

  • PDF

A Study on Impact Testing of a Rolling-stock Windscreen (철도차량 전면창유리 충격시험에 관한 연구)

  • Jeon, Hong Kyu;Park, Chan Kyoung;Seo, Jung Won;Jeon, Chang Sung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.365-371
    • /
    • 2013
  • This study describes impact test methods for a rolling-stock windscreen executed in Korea and Europe. Air-pressurized impact test equipment for the front windscreens of high speed trains was designed and manufactured. The equipment is capable of launching a projectile at 500km/h, in accordance with EN 15152's impact test method. Calibration of the test equipment was conducted to find an equation relating air pressure and projectile velocity. Specimens ($1000mm{\times}700mm$) having similar specifications with the front windscreens in metro and conventional trains were used to conduct impact tests with this equipment to research the impact characteristics of the screens according to the impact velocity.

Development of On Board Pyro-Shock Recorder for Launch Vehicle (발사체 탑재용 파이로 충격기록장치 개발 및 시험)

  • Kim, Joo-Nyun;Jung, Hae-Seung;Lee, Jae-Deuk;Kim, Bo-Gwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.65-71
    • /
    • 2005
  • Pyro-shock measurement system in launch vehicle is necessary to validate structural robustness and to prepare environmental qualification criteria for launch vehicle systems. This paper describes design, development and function test of prototype pyro-shock recorder to be employed on KSLV-I in the near future. Due to the limitation of telemetry transmission rate, pyro-shock recorder acquires and stores the shock sensor data with high sampling rate in short period and sends the data to the KSLV-I telemetry system with lower data rate. Signal conditioning in pyro-shock recorder is designed to enhance signal-to-noise ratio through proper placement of anti-aliasing filter.

Fusion Filter for the Trajectory and Instantaneous Impact Point Estimation of a Satellite Launch Vehicle (위성발사체 궤도 및 순간낙하점 추정을 위한 융합필터)

  • Ryu, Seong-Sook;Kim, Jeong-Rae;Song, Yong-Kyu;Ko, Jeong-Hwan;Sim, Hyung-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.4
    • /
    • pp.295-303
    • /
    • 2008
  • Malfunction of satellite launch vehicles with high speed and long range can be a major concern for operations. Flight safety system that monitor the trajectory and identify any failure of the launch vehicles. Tracking filters for the flight safety systems are different from common tracking filters since filter reliability is more emphasized than accuracy. Reliable estimation of instantaneous impact points requires reliable velocity estimates as well as reliable position estimates. A fusion filter for a flight safety system was developed with the tracking sensor models for the Korea Satellite Launch Vehicle I. The fusion filter performances were evaluated by analyzing the trajectory and instantaneous impact point estimates.

  • PDF