• Title/Summary/Keyword: 고섬광

Search Result 36, Processing Time 0.02 seconds

Exposure-Limit Distance as a Safety-Indicating Parameter of a High-Intensity Flash Source (고광도 섬광의 안전지표로서 노출제한거리)

  • Park, Seung-Man;Kim, Sang-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.1
    • /
    • pp.16-21
    • /
    • 2017
  • A systematic understanding of the effects of high-intensity flash sources on the human eye is strongly needed, not only for proper use of the sources, but for human eye health. In this study, the exposure-limit distance (ELD), indicating the minimal safe distance in case of seeing by chance a high-intensity flash, is proposed. The optical procedures to determine the ELD of a high-intensity flash are clarified, and the dependence of ELD on its parameters such as luminous intensity, duration, and radius of a flash are thoroughly investigated. From this investigation it is obvious that, while being weakly dependent on duration, the ELD is nearly proportional to the luminous intensity and the radius of a flash. The proposed ELD as an intuitive safety-indicating parameter is more useful and intuitive than the other characteristic parameters of a high-intensity flash. The ELD is expected to be an essential parameter as a safety indicator, to characterize the performance of a high-intensity flash and to promote the safety of the human eye.

Experimental Study on Design Parameters of Explosive-driven High-intensity Flash Generator (폭발형 고섬광 발생장치의 설계 변수에 관한 실험적 연구)

  • Kim, Kyung Sik;Ahn, Jae-Woon;Yang, Hui-Won;Kwon, Mi-Ra
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.283-288
    • /
    • 2016
  • A non-lethal weapon is a device that can subdue targets without causing death or mortal wounds. A high-intensity flash generator can negate electro-optical sensors and cause temporal flash blindness with a high intensity of light. In this study, we derive the design parameters of an explosive-driven high-intensity flash generator that uses the interaction of plasma caused by the detonation of explosives with surrounding inert gas. To determine the design parameters of the flash generator, we analyze test results measured using optical sensors. The experimental results show that the light intensity of xenon gas is about four times higher than that of air. In addition, the intensity increases with the weight of the explosive, and the inert gas cross-sectional area encountered a shock wave in the airframe. The light intensity caused by a double-initiation generator is about two times higher than that of the single-initiation generator.

Lunar Meteoroid Impact Monitoring

  • Kim, Eunsol;Kim, Jeongheon;Hong, Junseok;Kim, Jaemin;Kim, Yongha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.65.1-65.1
    • /
    • 2014
  • 달에 떨어지는 유성체(lunar meteoroid)는 그대로 표면에 충돌하여 섬광(flash)을 일으킨다. 이 현상은 매우 희미하고 순간적이지만 고감도 비디오카메라를 이용하면 지상 관측이 가능하다고 알려져 있다. 2013년 10월에 발사된 NASA의 Lunar Atmosphere and Dust Environment Explorer(LADEE)가 달 주위의 대기 및 먼지 환경을 측정하고 있는 동안 전 세계 지상관측 네트워크도 달 표면 충돌 감시 관측을 수행 중에 있다. 충남대학교에서도 LADEE 미션 시작인 10월부터 16인치 망원경에 고감도 비디오카메라를 장착한 시스템을 구성하여 매달 초승부터 상현까지 관측을 진행해왔다. 관측은 달 표면의 어두운 영역을 초당 30프레임으로 녹화하였으며, NASA에서 제공한 LunarScan 소프트웨어를 사용하여 섬광을 찾는 분석 작업을 수행하였다. 현재까지 약 70시간 동안 관측하고 분석하여 충돌 섬광 후보를 발견하였다. 본 발표에서 달 충돌 섬광 관측시스템에 대해 소개하고, 관측된 충돌 섬광 후보의 분석 결과를 제시할 것이다.

  • PDF

The Change of Collected Light According to Changing of Reflectance and Thickness of CdWO4 Scintillator for High Energy X-ray Imaging Detection (고에너지 X-선 영상검출을 위한 CdWO4 섬광체 두께와 반사체의 반사율 변화에 따른 광 수집량의 변화)

  • Lim, Chang Hwy;Park, Jong-Won;Lee, Junghee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1704-1710
    • /
    • 2020
  • The high-energy X-ray imaging detector used for container inspection uses a thick scintillator to effectively acquire X-rays. X-ray incident on the scintillator is generally up to 9MeV. Therefore, to effectively collect X-ray, it is necessary to use a thick scintillator. To collect the light generated by the reaction between X-ray and scintillator, an optical-sensor must be combined with the scintillator. In this study, a study on the design conditions of the detector using a CdWO4 and a small sensor is described. To calculate the collected light according to the change of the scintillator thickness and the reflectance of surface, MCNP6 and DETECT2000 were used. As a result of calculating, it was confirmed that when the reflectance of the surface was low, it was appropriate to select a scintillator with a thickness of 15 to 20-mm, but as the reflectance increased, it was confirmed that it was appropriate to select a CdWO4 with a thickness of 25 to 30-mm.

Preliminary Test of 3D Printed Plastic Scintillators for Proton Beam (3D 프린팅 플라스틱 섬광체의 양성자 빔에 대한 적용)

  • Sung-Hwan, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.681-686
    • /
    • 2022
  • In this study, a scintillation resin for 3D printing was fabricated with 1.0 wt% of PPO organic scintillator, 5.0 wt% of MMA, and commercial acrylic resin. Using the scintillation resin, 3D-shaped plastic scintillator radiation sensors were successfully fabricated quickly and inexpensively with a commercial 3D DLP printer. The 3D printed plastic scintillator has a good dose-output linearity of R-square 0.998 was obtained in the range of 1 to 10 nA of beam current of the 45 MeV proton beam. The developed 3D plastic scintillator has low light output, so there is a limit to its use in low-dose-rate gamma-ray or X-ray dosimetry. However, it was confirmed that the tissue equivalent material could be usefully used for measuring high energy or high dose rates radiation, such as proton beams and ultra-high dose rate beams.

Development of High-Sensitivity and Entry-Level Radiation Measuring Sensor Module (고감도 보급형 방사선 측정센서 모듈 개발)

  • Oh, Seung-Jin;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.510-514
    • /
    • 2022
  • In this paper, we propose the development of high-sensitivity low-end radiation measuring sensor module. The proposed measurement sensor module is a scintillator + photomultiplier(SiPM) sensor optimization structure design, amplification and filter and control circuit design for sensor driver, control circuit design including short-distance communication, sensor mechanism design and manufacturing, and GUI development applied to prototypes consists of, etc. The scintillator + photomultiplier(SiPM) sensor optimization structure design is designed by checking the characteristics of the scintillator and the photomultiplier (SiPM) for the sensor structure design. Amplification, filter and control circuit design for sensor driver is designed to process fine scintillation signal generated by radiation with a scintillator using SiPM. Control circuit design including short-distance communication is designed to enable data transmission through MCU design to support short-range wireless communication function and wired communication support. The sensor mechanism design and manufacture is designed so that the glare generated by wrapping a reflective paper (mirroring) on the outside of the plastic scintillator is reflected to increase the efficiency in order to transmit the fine scintillation signal generated from the plastic scintillator to the photomultiplier(SiPM). The GUI development applied to the prototype expresses the date and time at the top according to each screen and allows the measurement unit and time, seconds, alarm level, communication status, battery capacity, etc. to be expressed. In order to evaluate the performance of the proposed system, the results of experiments conducted by an authorized testing institute showed that the radiation dose measurement range was 30 𝜇Sv/h ~ 10 mSv/h, so the results are the same as the highest level among products sold commercially at domestic and foreign. In addition, it was confirmed that the measurement uncertainty of ±7.4% was measured, and normal operation was performed under the international standard ±15%.

Gamma Ray Detection Processing in PET/CT scanner (PET/CT 장치의 감마선 검출과정)

  • Park, Soung-Ock;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.29 no.3
    • /
    • pp.125-132
    • /
    • 2006
  • The PET/CT scanner is an evolution in image technology. The two modalities are complementary with CT and PET images. The PET scan images are well known as low resolution anatomic landmak, but such problems may help with interpretation detailed anatomic framework such as that provided by CT scan. PET/CT offers some advantages-improved lesion localization and identification, more accurate tumor staging. etc. Conventional PET employs tranmission scan require around 4 min./bed position and 30 min. for whole body scan. But PET/CT scanner can reduced by 50% in whole body scan. Especially nowadays PET scanner LSO scintillator-based from BGO without septa and operate in 3-D acquisition mode with multidetectors CT. PET/CT scanner fusion problems solved through hardware rather than software. Such device provides with the capability to acquire accurately aligned anatomic and functional images from single scan. It is very important to effective detection from gamma ray source in PETdetector. And can be offer high quality diagnostic images. So we have study about detection processing of PET detector and high quality imaging process.

  • PDF

A Pyrotechnic Mixture Composition and Design Verification of Bright Flash (파이로테크닉 고섬광 발생장치 조성설계 및 설계검증)

  • Kim, Hyung Jun;Choi, Sung Wook;Kwon, Mi Ra;Hwang, Jun Sik;Chang, Kwe Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.289-295
    • /
    • 2014
  • The composition of bright flash device is a pyrotechnic mixture consisting of metal powder, oxidizer and additives. A pyrotechnic mixture of bright flash device generates a bright flash through burning after being ignited by initiator. The function of bright flash is to distract or incapacitate electro optical sensor systems and enemy eyes temporally. This study is to develop composition of pyrotechnic mixture of bright flash and to analyze the test results by considering intensity and efficiency of light.

Fabrication and Characterization of a One-dimensional Fiber-optic Dosimeter for Electron Beam Therapy Dosimetry (치료용 전자선 계측을 위한 1차원 광섬유 방사선량계의 제작 및 특성분석)

  • Jang, Kyoung-Won;Cho, Dong-Hyun;Shin, Sang-Hun;Yoo, Wook-Jae;Jun, Jae-Hun;Lee, Bong-Soo;Moon, Joo-Hyun;Park, Byung-Gi
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.285-290
    • /
    • 2008
  • In this study, we have fabricated a one-dimensional fiber-optic dosimeter for electron beam therapy dosimetry. Each fiber-optic dosimeter has an organic scintillator with a plastic optical fiber and it is embedded and arrayed in the plastic phantom to measure one-dimensional high energy electron beam profile of clinical linear accelerator. The scintillating lights generated from each sensor probe are guided by plastic optical fibers to the multi-channel photodiode amplifier system. We have measured one-dimensional electron beam profiles in a PMMA phantom according to different field sizes and energies of electron beam. Also, the isodose and three-dimensional percent depth dose curves in a PMMA phantom are obtained using a one-dimensional fiber-optic dosimeter with different electron beam energies.

  • PDF

Preparation of an Inorganic Scintillator Loaded Film for the Measurement of Surface Contamination and its Performance Test (표면오염 측정용 무기섬광 함침 필름의 제조 및 성능 평가)

  • 서범경;이근우;임난주;박진호;한명진
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 2004
  • The smear media possible to sampling and radiation detection was prepared and evaluated for the surface contamination using indirect method. The films were made by impregnating Cerium Activated Yttrium Silicate (CAYS) in a polysulfone membrane. The membranes used solution as a dimethylformamide (DMF) and methylene chloride (MC), polysulfone as a polymer matrix and CAYS as a inorganic scintillator. The proximity membranes were prepared with single- and double-layered structure. The solidified methods were immersion to the nonsolvent bath such at water and ethanol and solvent evaporation. The measurement of the photon produced by interaction with radiation and inorganic scintillator used a photomultiflier tube (PMT), amplifier, and counter. In the comparison with the low background alpha/beta counter, the counter rate using inorganic scintillator proximity membrane for the $\^$14/C surface contamination was about 50%. Also. the $^3$H counting results revealed that the prepared membranes were efficient to monitor the surface contaminated with the low energy be-ray emitter nuclides.