• Title/Summary/Keyword: 고분자 증착 방법

Search Result 52, Processing Time 0.017 seconds

Effect of Surface Treatment of Polycarbonate Film on the Adhesion Characteristic of Deposited SiOx Barrier Layer (폴리카보네이트 필름 표면 처리가 증착 SiOx 베리어층 접착에 미치는 영향)

  • Kim, Gwan Hoon;Hwang, Hee Nam;Kim, Yang Kook;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.373-378
    • /
    • 2013
  • The interfacial adhesion strength is very important in $SiO_x$ deposited PC film for the barrier enhanced polycarbonate (PC) flexible substrate. In this study, PC films were treated by undercoating, UV/$O_3$ and low temperature plasma and then the effect of physical and chemical surface modifications on the interfacial adhesion strength between PC film and $SiO_x$ barrier layer were studied. It was found that untreated PC film shows significantly low interfacial adhesion strength due to the smooth surface and low surface free energy of PC. Low temperature plasma treatments resulted in the increase of both surface roughness and surface free energy due to etching and the appearance of polar molecules on the PC surface. However, UV/$O_3$ treatment only shows the increase of surface free energy by developed polar molecules on the surface. These surface modifications caused the enhancement of surface interfacial strength between PC film and $SiO_x$ barrier. In the case of undercoating, it was found that the increase of surface interfacial strength was achieved by adhesion between various acrylic acid on acrylate coated surface and $SiO_x$ without increase of polar surface energy. In addition, the barrier property is also improved by organic-inorganic hybrid multilayer structure.

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.