• Title/Summary/Keyword: 고분자필름

Search Result 553, Processing Time 0.02 seconds

Thermotropic Liquid Crystalline Behavoir of Hydroxypropyl Celluloses Containing Cyanoazobenzene and Their Photocrosslinked Films (시아노아조벤젠을 함유한 히드록시프로필 셀룰로오스 및 그 광가교 필름들의 열방성 액정 거동)

  • Kim, Hyo-Gap;Jeong, Seung-Yong;Yang, Si-Yeul;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.76-87
    • /
    • 2012
  • Three kinds of hydroxypropyl cellulose (HPC) derivatives, [6-{4-(4-cyanophenylazo)phenoxy}]hexyloxypropyl celluloses (CAHPCs) with degree of etherification (DET) ranging from 0.4 to 3, fully substituted acrylic acid esters of HPC (HPCA) and CAHPCs (CAHPCAs) were synthesized. The crosslinked HPCA (HPCAG) and CAHPCAs (CAHPCAGs) were also prepared by exposing thermotropic mesophases of HPCA and CAHPCAs to UV light. Both CAHPCs and CAHPCAs with DET ${\leq}$ 1.2, as well as HPC and HPCA, formed enantiotropic cholesteric phases whose optical pitches(${\lambda}_m$'s) increase with temperature, wheras both CAHPCs and CAHPCAs with DET ${\geq}$ 1.4 showed monotropic nematic phases. CAHPCAGs with DET ${\leq}$ 1.2, as well as CAHPCAs with DET ${\leq}$ 1.2, exhibited reflection colors in a wide temperature range. On the other hand, CAHPCAGs with DET ${\geq}$ 1.4, as well as CAHPCAs with DET ${\geq}$ 1.4, showed Schileren textures typical of nematic phase, indicating that the liquid crystalline structure is virtually locked upon photocrosslinking. The isotropization temperatures($T_i$'s) of both CAHPCAs and CAHPCAGs decreased with increasing DET. The $T_i$ of CAHPCAG, however, was higher than that of CAHPCA at the same DET. Moreover, the temperature dependence of ${\lambda}_m$ of CAHPCAGs was much weaker than that of CAHPCAs.

Fabrication and Electromechanical Behaviors of a SWNT/PANi Composite Film Actuator (탄소나노튜브/도전성폴리머 복합재 엑츄에이터의 제조 및 특성실험)

  • Zhang, Shuai;Kim, Cheol
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.7-11
    • /
    • 2006
  • The improved SWNTs/PANi composite actuator films applicable to an artificial muscle were fabricated successfully using a new process of manufacture that consists of 90% pure single-walled carbon nanotubes (SWNT) and chemical polymerization. PANi is electrically conducting polyaniline polymer. The conductivities of the composite SWNTs/PANi film-type actuators and the pure PANi films fabricated were measured as 56.15 S/cm and 17.38 S/cm, respectively, by the 4-prove method. The conductivity of the composite actuator is 3.2 times higher than the pure PANi film. The fabricated composite actuator showed higher conductivity than any other similar ones. The quality of samples was investigated by an electron scanning microscope (SEM). To measure the actuating strains, a specially designed beam balance apparatus was developed and strains of the composite actuators was measured by a laser displacement sensor subjected to electric currents. During the operation, the sample was soaked in the $NaNO_3$ solution and the sine-wave voltage in the range of $+1V{\sim}-1V$ was applied. The length of the composite actuator changed from $l_0=12.690$ mm to $l_1=12.733$ so that the change of length was l=0.043 mm and the strain was 0.34 %. This is a very high strain for this kind of a composite actuator. Other result reported by Tahhan showed 0.23 % strain, so that the present result is improved by 48%.

A Rational Design of Coin-type Lithium-metal Full Cell for Academic Research (차세대 리튬 금속 전지 연구 및 개발을 위한 코인형 전지의 효율적 설계)

  • Lee, Mingyu;Lee, Donghyun;Han, Jaewoong;Jeong, Jinoh;Choi, Hyunbin;Lee, Hyuntae;Lim, Minhong;Lee, Hongkyung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.65-75
    • /
    • 2021
  • Coin cell is a basic testing platform for battery research, discovering new materials and concepts, and contributing to fundamental research on next-generation batteries. Li metal batteries (LMBs) are promising since a high energy density (~500 Wh kg-1) is deliverable far beyond Li-ion. However, Li dendrite-triggered volume fluctuation and high surface cause severe deterioration of performance. Given that such drawbacks are strongly dependent on the cell parameters and structure, such as the amount of electrolyte, Li thickness, and internal pressure, reliable Li metal coin cell testing is challenging. For the LMB-specialized coin cell testing platform, this study suggests the optimal coin cell structure that secures performance and reproducibility of LMBs under stringent conditions, such as lean electrolyte, high mass loading of NMC cathode, and thinner Li use. By controlling the cathode/anode (C/A) area ratio closer to 1.0, the inactive space was minimized, mitigating the cell degradation. The quantification and imaging of inner cell pressure elucidated that the uniformity of the pressure is a crucial matter to improving performance reliability. The LMB coin cells exhibit better cycling retention and reproducibility under higher (0.6 MPa → 2.13 MPa) and uniform (standard deviation: 0.43 → 0.16) stack pressure through the changes in internal parts and introducing a flexible polymer (PDMS) film.