• Title/Summary/Keyword: 고분자첨가제

Search Result 4, Processing Time 0.016 seconds

The Effects of Copolymer Additives for Drag Reduction on Turbulent Flow (합성고분자첨가제의 난류마찰저항 감소효과 연구)

  • Kim, N.S.;Kim, C.B.;Kim, I.S.;Choi, H.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.3
    • /
    • pp.207-216
    • /
    • 1993
  • Experimental investigations have been carried out to find the effect of drag reduction caused by effective polymer additives in turbulent flows. The experiments were undertaken with a test section of 9.8mm pipe diameter and 3500 mm pipe length(L/D=357) in a closed loop, and Copolymer-X and Polyacrylamide(PAAM) were used as polymer additives for comparisons. The tests were carried out under different polymer concentrations, and the temperatures of the flow considered were $26^{\circ}C$, $60^{\circ}C$ at the flow velocity of 5.3 m/s. The rate of drag reduction obtained by Copolymer-X is found to be considerably higher than that of PAAM in turbulent flows. Copolymer-X is also found to be very reliable for mechanical degradation, which has not been the case in any other additives. It is concluded that Copolymer-X is considered to be one of the most effective agents as an additive especially for long time hydraulic transports. It is also found that polymer degradation in more likely at lower polymer concentrations in the turbulent flows.

  • PDF

The Effects of Polymer Degradation on the Drag Reduction in CWM Transport (CWM 관수송의 저항 감소현상에 있어서 고분자첨가제의 퇴화 영향에 관한 연구)

  • 송창환;김종보;김인석;최형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1908-1914
    • /
    • 1992
  • A significant drag reduction in the turbulent flow of CWM(coal Water Mixture) adding minute amounts of high molecular weight polymer additives has been obtained and it was compared with pure CWM.However, the rate of drag reduction could come down with flow time, which is caused by polymer degradation, The rate of drag reduction and polymer degradation is affected by polymer type, concentration, molecular weight, and flow velocity. In the present investigation, these important parameters were evaluated for their influences on polymer degradation in order to find out stable conditions for CWM transportation with time. It was necessary to determine the more effective type of polymer additives to guarantee the optimum conditions for CWM transport. Experiments were undertaken with a test section of pipe diameter 9.8mm and pipe length 3500mm(L/D=357) in a closed loop, and polyacrylamide and polyetylene oxide were utilized as polymer additives. The tests were carried out under the conditions of 200, 400, 700ppm of polymer concentrations. CWM concentrations utilized were 5% and 10% with flow velocities of 4.9m/s and 6.1m/s. Experimental data show that polyehylene oxide degraded faster than polyacrylamide in CWM transport, and polyacryamide is considered to be a more effective candidate as additive for long time-CWM transport. Polymer degradation is also found to be more likely at lower polymer concentrations, at higher flow velocities, and higher CWM concentrations.

Changes in Wet Pressing Response of OCC stock by the Beating Time and the Addition of Polymer Aids (골판고지 지료의 고해처리 및 고분자첨가제에 의한 압착탈수 특성변화)

  • Sung, Yong-Joo;Lee, Han-Ba-Roh;Jeong, Wong-Ki;Jung, Jae-Gwon;Choi, Song-Gu;Im, Chang-Kuk;Gwon, Wan-Oh;Seo, Yong-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.2
    • /
    • pp.77-82
    • /
    • 2011
  • The changes in the wet pressing response of old corrugated container(OCC) stock depending on the beating treatment and the addition of polymer aids were investigated with laboratory roll press instrument. Two types of polymer aids, such as high molecular weight polymer with low charge density and low molecular weight polymer with high charge density, were applied in this study. The more beaten OCC stock showed the lower dryness after wet pressing. The addition of polymer aids had great influences on the wet pressing efficiency and paper properties. The dryness after wet pressing was increased by the addition of polymer aids, but the pattern of changes in dryness were different depending on the type of polymer and the properties of stock. The higher molecular weight polymer aids showed the greater increase in the dryness. The properties of paper such as air permeability, bulk, formation, tensile strength were also greatly affected by the addition of polymer aids.

A Study of Drag Reduction by Polymer-Surfactant Mixture System (고분자-계면활성제 혼합물에 의한 마찰저항 감소연구)

  • Kim, Jeong-Tae;Kim, Cheol-Am;Choe, Hyeong-Jin;Kim, Jong-Bo;Yun, Hyeong-Gi;Park, Seong-Ryong
    • Korean Journal of Materials Research
    • /
    • v.8 no.2
    • /
    • pp.135-140
    • /
    • 1998
  • Drag reduction produced by dilute solution of water soluble ionic polymer-surfactant complex under turbulent flow in a rotating disk apparatus(RDA) was investigated in this study. Three different molecular weights of polyacrylic acid(PAA) were adopted as drag reducing additives, and distilled water was used as a solvent. Experiments were undertaken to observe the dependence of drag reduction on various factors such as polymer molecular weight, molecular expansions and flexibility, rotating speed of the disk and polymer concentration. Specific considerations were put on conformational difference between surfactant and polymer, and effect of pH on ionic polymer possessing various molecular conformation through pH. The complex of ionic polymer and surfactant(Sodium Dodecyl Sulfate) behaves like a large polyelectrolyte. Surfactant changes the polymer conformation and then increases the dimension of the polymer. The radius of gyration, hydrodynamic volume and relative viscosity of the polymer-surfactant system are observed to be greater than those of polymer itself. Such surfactant-polymer complex has enhanced drag reduction properties.

  • PDF