• Title/Summary/Keyword: 고변형률 속도

Search Result 29, Processing Time 0.031 seconds

Investigation of Tensile Strain Rate Effects on Composite Material for Aircraft Structural Survivability Assessment (항공기 구조생존성 평가를 위한 복합재의 변형률 속도 영향성 분석)

  • Seo, Bo-hwi
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.106-111
    • /
    • 2018
  • Hydrodynamic ram phenomenon could be generated by external threats such as impact and blast in the aircraft. High strain rate deformation caused by the hydrodynamic ram phenomenon is one of the main factors to influence structural survivability. Mechanical properties of composite structure change rapidly under conditions of high strain rate. Therefore, it is necessary to experimentally investigate the influence of strain rates for aircraft structural survivability. In this paper, tensile tests of composite material were conducted for low and high strain rates to investigate the influence of the various strain rates. Tensile modulus increases more compared to tensile strength at high strain rate under hydrodynamic ram condition. Regression analysis was conducted to predict tensile modulus at various strain rates because it is one of the main damaging factors for composite structures under high strain rate conditions. Also, the mechanical properties of composite materials were acquired and analyzed under high strain rate conditions. It is hypothesized that the results from this study would be used for designing aircraft composite structures and evaluation considering structural survivability.

SHPB기법을 사용한 고변형률 속도 하중하에서의 합성수지(PH162/ PB160)의 동적 변형 거동

  • 김성현;이억섭;이종원;황시원;조규상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.47-47
    • /
    • 2004
  • 충격하중을 받는 재료의 거동에 관한 연구는 공학의 넓은 분야에 깊은 관계를 가지고 있다. 특히 동적하중을 받는 경계조건 하에서 사용되는 구조물을 정밀하게 설계 제작하는 필요성이 고조됨에 따라 여러 재료들의 고변형률 속도로 변형될 경우에 대한 역학적인 성질이 중요한 과제로 떠오르고 있다. 구조물의 건전성과 신뢰성을 향상시키기 위해서는 구조물이 실제적으로 받는 여러 조건의 하중하에서의 실험적으로 정밀하게 획득된 정확하고, 완벽한 재료 물성치가 필요하다. (중략)

  • PDF

Dynamic deformation behavior of rubber under high strain rate compressive loading (플라스틱 SHPB를 사용한 고무의 고변형률 하중하에서의 동적변형 거동)

  • 이억섭;김경준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.849-853
    • /
    • 2002
  • A specific experimental method, the split Hopkinson pressure bar (SHPB) technique has been widely used to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 103/s~104/s. In this paper, dynamic deformation behaviors of rubber materials widely used for the isolation of vibration from varying structures under dynamic loading are determined using a Split Hopkinson Pressure Bar technique.

  • PDF

Dynamic Deformation Behavior of Rubber Under High Strain-Rate Compressive Loading by Using Plastic SHPB Technique (플라스틱 SHPB기법을 사용한 고무의 고변형률 하중 하에서의 동적변형 거동)

  • 이억섭;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.158-165
    • /
    • 2003
  • A specific experimental method, the Split Hopkinson pressure bar (SHPB) technique has been widely used to determine the dynamic material properties under the impact compressive loading conditions with strain rate of the order of 10$^3$/s∼l0$^4$/s. In this paper, dynamic deformation behaviors of rubber materials widely used for the isolation of vibration from structure under varying dynamic loading are determined by using plastic SHPB technique. A transition point to scope with the dynamic deformation behavior of rubber-like material is defined in this paper and used to characterize the specifics of the dynamic deformation of rubber materials.

Dynamic deformation behavior of rubber and brass under high strain rate compressive loading (고변형률 속도 압축 하중 하에서의 고무와 황동의 동적 거동 특성)

  • 이억섭;김경준;이종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1491-1494
    • /
    • 2003
  • A specific experimental method, the Split Hopkinson Pressure Bar (SHPB) technique has been widely used to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 103/s∼104/s. This type of test procedure has been used to examine the dynamic response of materials in various modes of testing. In this paper, dynamic deformation behaviors of rubber materials widely used for the isolation of vibration from varying structures under dynamic loading are determined using a Split Hopkinson Pressure Bar technique.

  • PDF

Dynamic deformation behavior of Ethylene Copolymer under high strain rate compressive loading (SHPB 기법을 사용한 고변형률 속도 하중하에서의 합성수지의 동적 변형 거동)

  • Lee, Jong-Won;Lee, Ouk-Sub;Hwang, Si-Won;Kim, S-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.371-376
    • /
    • 2004
  • It is well known that a specific experimental method such as the Split Hopkinson Pressure Bar (SHPB) technique is the simplest experimental technique to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of $10^3/s{\sim}10^4/s$. This type of experimental procedure has been widely used with proper modification on the test setups to determine the varying dynamic response of materials for the dynamic boundary conditions such as tensile and fracture as well. In this paper, dynamic compressive deformation behaviors of an Ethylene Copolymer materials widely used for the isolation of vibration from varying structures under dynamic loading are estimated using the SHPB technique.

  • PDF

Dynamic Deformation Behavior of Rubber and Ethylene Copolymer Under High Strain Rate Compressive Loading (SHPB기법을 사용한 고무와 합성수지의 고변형률 속도 하중 하에서의 동적 변형 거동)

  • 이억섭;이종원;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.122-130
    • /
    • 2004
  • It is well known that a specific experimental method, the Split Hopkinson Pressure Bar (SHPB) technique is a best experimental technique to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 10$^3$/s∼10$^4$/s. This type of experimental procedure has been widely used with proper modification on the test setups to determine the varying dynamic response of materials for the dynamic boundary conditions such as tensile and fracture as well. In this paper, dynamic compressive deformation behaviors of a rubber and an Ethylene Copolymer materials widely used for the isolation of vibration from varying structures under dynamic loading are estimated using a Split Hopkinson Pressure Bar technique.

Dynamic Deformation Behavior of Aluminum Alloys under High Strain Rate Compressive/Tensile Loading (고변형률 압축/인장 하중에 대한 알루미늄 합금의 동적 변형 거동)

  • 이억섭;김면수;황시원;조규상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.196-204
    • /
    • 2003
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as seismic loading are required to provide appropriate safety assessment to these mechanical structures. The split Hopkinson Pressure Bar (SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, dynamic deformation behaviors of the aluminum alloys such as A12024-T4, A16061-T6, and A17075-T6 under both high strain rate compressive and tensile loading conditions are determined using the SHPB technique.

Dynamic Compressive Deformation Characteristics of Free-Cutting Brass And Yellow Brass at High Strain Rates (고변형률 압축 하중에서 쾌삭 황동과 황동의 동적 변형 거동 특성)

  • Lee, Ouk-Sub;Kim, Kyoung-Joon;Lee, Jong-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.107-112
    • /
    • 2003
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as high impact loading are required to provide appropriate safety assessment to varying dynamically loaded mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, the dynamic deformation behavior of a brass under both high strain rate compressive loading conditions has been determined using the SHPB technique.

  • PDF