• 제목/요약/키워드: 고무공

검색결과 441건 처리시간 0.026초

노면 특성을 고려한 고무 마찰 예측 연구 (The Prediction of Rubber Friction considering Road Characteristics)

  • 남승국;오염락;전성희
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.105-110
    • /
    • 2014
  • This paper presents the hysteresis friction of a sliding elastomer on various types of surfaces. The hysteresis friction is calculated by means of an analytical model which considers the energy spent by the local deformation of the rubber due to surface asperities. By establishing the fractal character of the surfaces, the contribution to rubber friction of roughness at different length scales is accounted for. High resolution surface profilometer is used in order to calculate the main three surface descriptors and the minimal length scale that can contribute to hysteresis friction. The results show that this friction prediction can be used in order to characterize in an elegant manner the surface morphology of various surfaces and to quantify the friction coefficient of sliding rubber as a function of surface roughness, load and speed.

고무 탄성커플링을 갖는 선박 추진축계 비틀림의 동특성 개선 (Improvement of Dynamic Characteristics of Torsion on the Marine Propulsion Shafting System with Elastic Rubber Coupling)

  • 이돈출
    • 한국소음진동공학회논문집
    • /
    • 제13권12호
    • /
    • pp.923-929
    • /
    • 2003
  • As for the marine propulsion shafting system using 4 stroke diesel engine, it is common to apply a reduction gear box between diesel engine and shafting to increase propulsion efficiency, which requires inevitably a certain elastic coupling to avoid chattering and hammering inside of gear box. In this study, the optimum method of rectifying propulsion shafting system in case of 750 ton fishing vessel is theoretically studied in a view of dynamic characteristics of torsion. After the replacement of diesel engine and gear box, the torsional vibration get worse and so some countermeasures are needed. The elastic coupling is modified from a present rubber coupling of block type having relatively high torsional stiffness to a rubber coupling haying two serially connected elements. Torsional vibration damper was installed at crankshaft free end additionally and moment of inertia of flywheel was adjusted. The dynamic characteristics of shafting system was improved by these modification. The theoretical analysis of torsional vibration are compared to measurement results using two laser torsion meters during the sea trial.

압축된 방진고무의 강성 해석 (Stiffness Analysis of Compressed Rubber Components for Anti-Vibration)

  • 김국원;임종락;안태길
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.141-147
    • /
    • 1999
  • Optical disk technology with a laser beam for data recording and retrieval is one of the most promising route for high density information storage in multimedia era. As the storage density and data transfer rates are increased, mechanical issues, mainly noise and vibration, become critical. Rubber materials are extensively used in various machine design application, mainly for vibration/shock/noise control devices. Over the years an enormous effort has been put into developing procedures to provide properties of rubber components with complex shape and under pre-deformed state. In this paper, non-linear large deformations of a rubber mount for optical disk drive were investigated using the finite element method. A tension test of rubber material was performed, to calculate a strain energy function. According to the pre-deformed state, the variation of rubber mount stiffness were calculated and the reliability of numerical results were checked by compared with the measuring the deflection values. Also, the effects of the pre-deformed rubber mount on the system dynamic characteristics were investigated and the relation between the static stiffness variation of rubber mount and the natural frequence variation of system was discussed.

  • PDF

연속적 확대 유전기법을 이용한 고무물성계수의 산출 (Estimation of the Rubber Material Property by Successive Zooming Genetic Algorithm)

  • 권영두;김재용;이재관;권현욱;한인식
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.36-44
    • /
    • 2005
  • Nowadays, various kind of rubber-like materials are used in industry. These are usually installed in automobiles, trains, etc. They work as dampers or important parts in the system, and the applications for rubber-like materials are increasing. In the past days, rubber engineers and designers predicted rubber material behaviors by the analytic method for limited problems. With the progress of digital computers, Finite Element Methods is widely used for analyzing the rubber-like materials. The popular methods predicting rubber material property are curve fitting and least square method, but there are some problems such as low precision and tedious solving process. Here, we introduce a method estimating rubber material property by successive zooming genetic algorithm(SZGA). The proposed algorithm offers more precise rubber property. To demonstrate the effectiveness of the proposed algorithm, we compared this method with Haines & Wilson's method, MARC, ABAQUS.

섬유보강 면진베어링의 실험적 특성 해석 (An Experimental Study on Fiber Reinforced Elastomeric Bearing)

  • 문병영;강경주;강범수;김계수
    • 한국지진공학회논문집
    • /
    • 제6권1호
    • /
    • pp.1-6
    • /
    • 2002
  • 면진베어링으로 기존에 사용되고 있는 철판보강 면진베어링에서 철판을 섬유로 대체하여 섬유보강 면진베어링을 설계 및 제작하였다. 섬유면진보강베어링의 특성을 파악하기 위해서 철판보강 면진베어링과 섬유보강 면진베어링에 대해 수평실험과 압축실험을 수행하였다. 시험결과 섬유보강 면진베어링의 유효 감쇠는 천연고무 면진베어링에 비해서 높았다. 이 결과는 지진하중하에서 섬유보강 면진베어링은 에너지 분산능력이 뛰어나다는 것을 의미한다. 이 연구결과로 인해 섬유보강 면진베어링이 저가건물에 널리 사용될 수 있을 것으로 기대된다.

활동형 지진격리 시스템을 적용한 지진격리 교량의 비선형 유한요소해석(S/W:ABAQUS, H/W:CrayC94)

  • 음성우
    • 전산구조공학
    • /
    • 제11권1호
    • /
    • pp.38-45
    • /
    • 1998
  • 최근 국내외에서 활발히 개발되고 있는 지진격리 시스템은 원자력 발전소, 교량, 중요한 공공건물 등의 지진피해를 최소화하기 이하여 널리 적용되고 있다. 그리고 다른 방법에 비하여 경제성 및 효율성이 우수하기 때문에 관련 연구 및 응용이 활발히 진행되고 있다. 이에 따라 국내외에서 격리시스템의 비선형성과 구조물의 불연속성을 고려한 지진격리 구조물의 해석을 통한 거동을 규명하는 연구가 과거 수년간 활발히 진행되어 왔다. 당사(금호건설)는 상부하중 지지능력과 감쇠능력이 우수한 지진격리장치를 개발하였으며 지진격리장치를 설치한 교량의 지진해석을 수행하여 본 지진격리 시스템의 이론적 성능을 파악하였다. 본 수치해석은 CrayC94에 탑재된 비선형 해석에 뛰어난 것으로 알려진 ABAQU를 이용하였다. 본 지진격리 시스템은 적층고무받침(Laminated Rubber Bearing)과 PTFE 미끄럼받침으로 구성되어 있으며, 적층고무받침은 주로 복원력을 제공하며 PTFE 미끄럼받침은 상부하중을 지지하며 마찰감쇠를 제공하여 에너지를 소산하는 역할을 한다. 본 수치해석에서는 선형스프링과 마찰요소를 이용하여 각각을 모형화하였다. 개발된 지진격리 시스템이 주로 사용될 상판자중이 무거운 다경간 연속 PC Box Girder교를 모델교량으로 선택하여 해석을 수행하였으며 수치해석에 사용된 격리시스템의 사전에 수행된 동특성 실험결과를 활용하였다. 이러한 해석을 통하여 이론적 효율성을 파악할 수 있었다.

  • PDF

자동차 방진고무부품의 피로수명 예측 및 평가 (A Study on the Fatigue Life Prediction and Evaluation of Rubber Components for Automobile Vehicle)

  • 우창수;김완두;권재도
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.56-62
    • /
    • 2005
  • The fatigue analysis and lifetime evaluation are very important in design procedure to assure the safety and reliability of the rubber components. Fatigue lifetime prediction methodology of the rubber component was proposed by incorporating the finite element analysis and fatigue damage parameter from fatigue test. Finite element analysis of 3D dumbbell specimen and rubber component were performed based on a hyper-elastic material model determined from material test. The Green-Lagrange strain at the critical location determined from the FEM was used for evaluating the fatigue damaged parameter of the natural rubber. Fatigue life of the rubber component are predicted by using the fatigue damage parameter at the critical location. Predicted fatigue lifes of the rubber component agreed fairly well the experimental fatigue lives.

타이어 고무배합물의 초탄성을 고려한 레이디얼 타이어의 팽창에 관한 유한요소해석 (F.E. Analysis of the Radial Tire Inflation Using the Hyperelastic Properties of Rubber Compounds Sampled from a Tire)

  • 김용우;김종국
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.125-134
    • /
    • 2003
  • In this study, Mooney-Rivlin 1st model and Mooney-Rivlin 3rd model are adopted as strain energy density functions of the rubber compounds of a radial tire. It is shown that the FE analysis using Mooney-Rivlin models for rubber compounds may provide good approximations by employing the appropriate strain range of experimental stress-strain data in a way to describe the stress-strain relationship accurately. Especially, Mooney-Rivlin 3rd model gives an accurate stress-strain relationship regardless of the fitting strain range used within the strain of 100%. The static nonlinear FE analysis of a tire inflation is performed by employing an axisymmetric model, which shows that the outside shapes of the tire before and after inflating the tire agree well with those of the real tire. Additionally, the deformations at crown center and turning point on sidewall, distribution of belt cord force, interlaminar shear strain are predicted in terms of variation of belt cord angle which is known as the most influential factor in inflation behavior of a tire.

고무 패드 성형 공정의 유한요소 모델링 (Finite Element Modeling of Rubber Pad Forming Process)

  • 신수정;이태수;오수익
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.117-126
    • /
    • 1998
  • For investigating rubber pad sheet metal forming process, the rubber pad deformation characteristics as well as the contact problem of rubber pad-sheet metal has been analyzed. In this paper, the behavior of the rubber deformation is represented by hyper-elastic constitutive relations based on a generalized Mooney-Rivlin model. Finite element procedures for the two-dimensional responses, employing total Lagrangian formulations are implemented in an implicit form. The volumetric incompressibility condition of the rubber deformation is included in the formulation by using penalty method. The sheet metal is characterized by elasto-plastic material with strain hardening effect and analyzed by a commercial code. The contact procedure and interface program between rubber pad and sheet metal are implemented. Inflation experiment of circular rubber pad identifies the behaviour of the rubber pad deformation during the process. The various form dies and scaled down apparatus of the rubber-pad forming process are fabricated for simulating realistic forming process. The obtaining experimental data and FEM solutions were compared. The numerical solutions illustrate fair agreement with experimental results. The forming pressure distribution according to the dimensions of sheet metal and rubber pads, various rubber models and rubber material are also compared and discussed.

  • PDF

승용차 서브프레임용 고무부시의 동강성 예측 (Estimation of Dynamic Characteristics of a Rubber Component for Subframe in Automobile Vehicle)

  • 안태길;구준환;김주성;이용헌;김기주;최병익;이학주;우창수;김경식
    • 한국소음진동공학회논문집
    • /
    • 제20권10호
    • /
    • pp.907-914
    • /
    • 2010
  • While rubber components are extensively used in automobile vehicle, there are still a lot of difficulties in designing the rubber components applied in complex shapes and preloaded states because of the complicated material properties. In this paper, an efficient experimental method is suggested, which estimates the dynamic stiffness of a rubber component using rubber material test and static stiffness of the bush. And it is verified by comparing with FEM predictions and experimental results. This method is capable of predicting the dynamic stiffness of a rubber bush under various load conditions from minimized test data. Also it estimates dynamic characteristics of a rubber component using rubber material test and FEM calculation.