• Title/Summary/Keyword: 고망간강

Search Result 17, Processing Time 0.022 seconds

On the Manufacture of High Manganese Steel Plate (고(高)망간강(鋼) 판재(板材) 제조(製造)에 대한 연구(硏究))

  • Choi, Ju;Shin, Myung-Chul
    • Applied Microscopy
    • /
    • v.7 no.1
    • /
    • pp.45-49
    • /
    • 1977
  • For obtaining high manganese steel plates, the study has been made on the optimum conditions in melting, forging, rolling and water toughning treatment practices. The optimum water toughning temperature and time was found to be $1030^{\circ}C$ and 30 min. respectively for the plates of 1 mm thickness. The argon atmosphere is very effective for the prevention of decarburization which can be easily occured in open air. There is a close relation between the degree of c 이 d working and the hardess. The greater the cold reduction ratio is, the smaller the grain size is and it results in the increase of hardness. The improvement of tensile and bending properties can be made by the addition of small amount of nickel, chromium and vanadium.

  • PDF

Effects of Strain Rate and Temperature on Tensile Properties of High Mn Twinning Induced Plasticity Steels (고망간 Twinning Induced Plasticity 강의 인장 특성에 미치는 변형률 속도와 온도의 영향)

  • Lee, Junghoon;Lee, Sunghak;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.643-651
    • /
    • 2017
  • Four types of high Mn TWIP(Twinning Induced Plasticity) steels were fabricated by varying the Mn and Al content, and the tensile properties were measured at various strain rates and temperatures. An examination of the tensile properties at room temperature revealed an increase in strength with increasing strain rate because mobile dislocations interacted rapidly with the dislocations in localized regions, whereas elongation and the number of serrations decreased. The strength decreased with increasing temperature, whereas the elongation increased. A martensitic transformation occurred in the 18Mn, 22Mn and 18Mn1.6Al steels tested at $-196^{\circ}C$ due to a decrease in the stacking fault energies with decreasing temperature. An examination of the tensile properties at $-196^{\circ}C$ showed that the strength of the non-Al added high Mn TWIP steels was high, whereas the elongation was low because of the martensitic transformation and brittle fracture mode. Although a martensitic transformation did not occur in the 18Mn1.9Al steel, the strength increased with decreasing temperature because many twins formed in the early stages of the tensile test and interacted rapidly with the dislocations.

Friction and Wear Properties of High Manganese Steel in Brake Friction Material for Passenger Cars (자동차용 브레이크 마찰재에서 고망간강의 마찰 및 마모특성)

  • Jung, Kwangki;Lee, Sang Woo;Kwon, Sungwook;Song, Myungsuk
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.88-95
    • /
    • 2020
  • In this study, we investigate the mechanical properties of high manganese steel, and the friction and wear characteristics of brake friction material containing this steel, for passenger car application, with the aim of replacing copper and copper alloys whose usage is expected to be restricted in the future. These steels are prepared using a vacuum induction melting furnace to produce binary and ternary alloys. The hardness and tensile strength of the high manganese steel decrease and the elongation increases with increase in manganese content. This material exhibits high values of hardness, tensile strength, and elongation; these properties are similar to those of 7-3 brass used in conventional friction materials. We fabricate high manganese steel fibers to prepare test pad specimens, and evaluate the friction and wear characteristics by simulating various braking conditions using a 1/5 scale dynamometer. The brake pad material is found to have excellent friction stability in comparison with conventional friction materials that use 7-3 brass fibers; particularly, the friction stability at high temperature is significantly improved. Additionally, we evaluate the wear using a wear test method that simulates the braking conditions in Europe. It is found that the amount of wear of the brake pad is the same as that in the case of the conventional friction material, and that the amount of wear of the cast iron disc is reduced by approximately 10. The high manganese steel is expected to be useful in the development of eco-friendly, copper-free friction material.

Fatigue Strength Assessment of High Manganese Steel for LNG CCS (LNG CCS적용을 위한 고망간강의 극저온 피로성능 평가)

  • Lee, Jin-Sung;Kim, Kyung-Su;Kim, Yooil;Yu, Chang-Hyuk;Park, Jooil;Kang, Bong-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.246-253
    • /
    • 2014
  • Liquid natural gas is stored and transported inside cargo tank which is made of specially designed cryogenic materials such as 9% Ni steel, Al5083-O alloy and SUS304 and so on. The materials have to keep excellent ductile characteristics under the cryogenic environment, down to -163oC, in order to avoid the catastrophic sudden brittle fracture during the operation condition. High manganese steel is considered to be the promising alternative material that can replace the commonly used materials mentioned above owing to its cost effectiveness. In line with this industrial need, the mechanical properties of the high manganese steel under both room and cryogenic environment were investigated in this study focused on its tensile and fatigue behavior. In terms of the tensile strength, the ultimate tensile strength of the base material of the high manganese steel was comparable to the existing cryogenic materials, but it turned out to be undermatched one when welding is involved in. The fatigue strength of the high manganese steel under room temperature was as good as other cryogenic materials, but under cryogenic environment, slightly less than others though better than Al 5083-O alloy.

Evaluation of Microstructure and Mechanical Properties according to Cooling Method after Hot Forging of High Manganese Steel Flange (고망간강 플랜지의 열간 단조 후 냉각방법에 따른 미세조직 및 기계적 특성 평가)

  • Minha Park;Gang Ho Lee;Byung Jun Kim;Byoungkoo Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.44-54
    • /
    • 2024
  • High-Manganese (Mn) austenitic steel, with over 24 wt% Mn content, offers outstanding mechanical properties in cryogenic settings, making it a potential replacement for existing cryogenic materials. This high manganese steel exhibits high strength, ductility, and wear resistance, making it promising for applications like LNG tanks, flanges, and valves. To operate in cryogenic environments, hot forging and heat treatment processes are vital, especially in flange production. The cooling rate during high-temperature cooling after hot forging plays a critical role in influencing the microstructure and mechanical properties of high manganese steel. The rate at which cooling occurs during this process influences the size of the grains and the distribution of manganese and consequently has an impact on mechanical properties. This study assessed the microstructure and mechanical properties based on different cooling rates during the hot forging of High-Mn steel flanges. Comparing air and water cooling after hot forging, followed by heat treatment, revealed notable differences in grain size. These differences directly impacted mechanical properties such as tensile strength, hardness, and Charpy impact property. Understanding these effects is crucial for optimizing the performance and reliability of High-Mn steel in cryogenic applications.

Development of the First LNG Bunkering Barge System in Korea (한국 최초의 LNG벙커링 바지시스템 개발)

  • Jung, Dong-Ho;Oh, Seung-Hoon;Jung, Jae-Hwan;Hwang, Sung-Chul;Sung, Hong-Gun;Lee, Jae-Ik;Kim, Eun-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.162-163
    • /
    • 2018
  • This study introduces the R&D project of development of the 1st LNG bunkering barge in Korea. The Design and pilot test of Barge-To-Ship 500cbm LNG bunkering barge system for coastal trading LNG-fueled ship is proposed. The following technologies will be developed from the project ; Basic/Detail design and pilot test of LNG Bunkering barge system, Basic/Detail design and pilot test of LNG bunkering process system considering LNG loading/unloading, Basic/Detail design and pilot test of 500cbm LNG tank in type-C, Evaluation of bunkering performance according to conditions (environment, SIMOPs) by numerical simulation, Performance evaluation of bunkering barge, towed barge and Barge-To-Ship motion considering ocean environment load, and scenario in Barge-To-Ship LNG bunkering. This project will contribute expansion to LNG-fueled ship industry and pave the way to establish LNG bunkering hub port.

  • PDF

Studies on Nutrio-physiology of Low Productive Rice Plants (수도저위생산력(水稻低位生産力)의 원인구명(原因究明)에 관(關)한 영양생리적연구(營養生理的硏究))

  • Park, Jun-Kyu
    • Applied Biological Chemistry
    • /
    • v.17 no.1
    • /
    • pp.1-30
    • /
    • 1974
  • Present study was undertaken to elucidate the relationship between uptake of nutrients and photosynthetic activities, and the translocation of several mineral nutrients in rice plants which were grown under different cultural conditions, utilizing radioactive tracer technique. Particular emphasis was placed on the analysis of patterns of nutrient uptake, the relationship between nutritional conditions and yield components. For this, rice plants grown on either low or high yielding fields at different growth stage were subjected to this study. The results are summarized as follows; 1. Varietal difference was observed in the uptake of potassium and phosphorus. Kusabue and Jinheung had good capacity but Paldal had rather poor capacity for the uptake of the both nutrients. 2. For rice plants, a high positive correlation was found between the oxidation of alpha plaus-naphthylamine by root and uptake of phosphorus. 3. Carbon assimilation rate repended on rice varieties. It was high in Noindo, Gutaenajuok #3 Suweon #82 and Jinheung but low in Taegujo, Kwanok, Yugu #132 etc. 4. Heavy application of nitrogen increased carbon assimilation in rice plants but this also depressed translocation of certain carbohydrates to ears. 5. Carbon assimilation wan greatly hampered in rice plants deficient in magnesium, phosphorus or potassium. 6. Total dry matter after ear formation stage, was much higher in rice plants grown in high yielding fields than those grown in low yielding fields. 7. Leaf area index(LAI) reached maximum at heading stage and decreased thereafter in high yielding fields. But in low yielding fields, it reached maximum before heading and sharply decreased thereafter due to early senescence of lower leaves. 8. In general, light transmission ratio (LTR) of leaves was higher in the early growth stage and lower in later stages. Higher ratio of LTR to leaf area index, was found in the rice grown in high yielding fields than those in low yielding fields. 9. Net photosynthetic activity decreased with the increase in leaf area index but was higher in high yielding fields than in low yielding fields. 10. After the ear formation stage, nitrogen, potassium and silicon as weil as $K_2O/N$ in straw were higher in high yielding fields than those in low yielding fields. 11. Nitrogen, phosphorus, potassium and magnesium taken up by rice plants in low yielding fields before heading stage were readily translocated to ears than those in high yielding fields. This suggests greater redistribution of nutrients in straw occurs due to lower uptake, in later growth stages, by rice plants grown in low yielding fields and hence results in early senescence due to nutrient deprivation. 12. In the high yielding fields nitrogen uptake by rice was slow but continuous throughout the life of the plants resulting in a large uptake even after heading. But, in low yielding fields the uptake was fast before heading and slow after heading. 13. A high positive correlation was found between the contents of nitrogen and potassium in the straw at heading stage and grain yield. Positive correlation was also found to hold between the contents of potassium, silicon, $K_2O/N$, $SiO_2/N$ in the straw at harvesting stage, and grain yield. 14. Carbon assimilation was greately hampered in rice plants deficient in magensium, phosphorus or potassium. 15. Uptake of nitrogen, phosphorus, potassium, silicon and manganese by rice was considerably higher in high yielding fields and reached maximum at ear formation stage. 16. In rice, a high positive correlation was discovered between total uptake of nitrogen, phosphorus, potassium, calcium, magnesium, silicon, manganese at harvesting stage and grain yield. 17. In rice, a high positive correlation was found between the total uptake of nitrogen, phosphorus, potassium, calcium, magnesium, silicon at harvesting stage, and number of spikelets per $3.3\;m^2$. In addition, a correlation was found between the total uptake of nitrogen and potassium and number of panicles per hill.

  • PDF