• 제목/요약/키워드: 고리형성반응

검색결과 68건 처리시간 0.033초

단백질섬유의 기능발색 트립토판 발색반응을 이용한 단백질성유의 염색성

  • 김경필;김혜인;정영진;박수민
    • 한국염색가공학회:학술대회논문집
    • /
    • 한국염색가공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.56-59
    • /
    • 2003
  • 방향족 화합물이나 방향족 이종원자 고리화합물은 오각형 이종원자 고리의 이중결차에 접합되어 indole과 같은 접합된 분자가 될 수 있다. 중요한 천연물로 널리 퍼져 있는 indole 고리화합물은 생체에서 아미노산인 tryptophan으로부터 생합성된다. 양모와 견과 같은 동물성 섬유도 그 기본성분이 아미노산이며, 모두 동물에서 형성된 생체고분자의 일종으로서 우리 인간의 세포조성물질과 유사하여 가장 친화성이 있는 섬유라고 할 수 있다. (중략)

  • PDF

Ab-initio 계산을 통한 비대칭 Diels-Alder 반응의 단계적 경로와 단일 반응 경로의 비교 연구

  • 손문기
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.101-109
    • /
    • 2013
  • Diels-Alder 반응은 유기합성에서 중요하게 다뤄지는 고리형성 반응으로 위치 선택성과 더불어 단일 단계 반응이기에 특이한 입체 선택성을 갖는 것으로 알려졌다. 그러나 실제로는 단계적 반응 경로도 존재할 수 있음을 발견하였는데, 이 경우에 갖는 위치 선택성과 입체 선택성은 달라질 가능성이 높다. Density Functional Theorem(DFT)로 계산한 결과, 비대칭 Diels-Alder 에 대해 단계적 반응의 경우에도 마찬가지로 유사 ortho 형태에 endo 지향성을 나타내었지만 대칭 Diels-Alder 반응에 비해 단계적 반응이 일어나기 힘들다는 결론을 얻을 수 있었다.

  • PDF

2-Amino-1-cyclopentene-1-dithiocarboxylate 유도체들의 전극 반응메카니즘 (Mechanistic Investigation of Redox Process of 2-Amino-1-cyclopentene-1-dithiocarboxylate derivatives)

  • 김영신;김우성;심윤보;최성락
    • 대한화학회지
    • /
    • 제34권3호
    • /
    • pp.260-266
    • /
    • 1990
  • N-methyl-2-amino-l-cyclopentene-l-dithiocarboxylic acid $(N-CH_3 acdc)$ 와 2-amino-l-cyclopentene-l-dithiomethyl ester $(S-CH_3 acdc)$의 전기화학적 거동을 직류폴라로그래피, 순환전압전류법 및 조절전위 전기량법을 사용하여 dimethylformamide(DMF) 용매 중에서 조사하였다. $N-CH_3$ acdc의 이합체는 + 0.98 V에서 2전자 산화반응을 거쳐 s가 한 원자 유리된 다섯 원자 고리를 형성하는 전극반응이 일어남을 알았다. 그러나, $S-CH_3 acdc의 경우에 있어서는 N-CH_3 acdc화합물과는 달리 다섯원자 고리를 형성하지 않았으므로 N-CH_3$ acdc와는 다른 전극반응을 일으킴을 확인하였다.

  • PDF

악틴 및 란탄족금속의 거대고리 착물 (제 1 보). 거대고리 리간드의 금속착물의 형성과 성질 (Macrocyclic Complexes of Actinide and Lanthanide Metals (Ⅰ). Formation and Properties of Cation Complexes with Macrocyclic Ligands)

  • 정오진;최칠남;윤석진;손연수
    • 대한화학회지
    • /
    • 제34권2호
    • /
    • pp.143-158
    • /
    • 1990
  • 본 연구에서는 동공의 크기가 다른 5종의 crown ether과 9종의 crownand계와 1종의 cryptand계 거대고리 리간드를 포함하는 우라늄(Ⅵ), 토륨(Ⅳ) 및 네오디뮴(Ⅲ), 사마륨(Ⅲ), 홀뮴(Ⅲ) 등의 희토류 금속착물을 합성 후, 고체착물의 조성식을 결정하고 적외선 스펙트럼에 의하여 구조를 확인한 다음 핵자기공명 분광법에 의하여 착물용액의 조성비와 분자내의 착물형성 site를 결정하고 착물들의 용매화 현상과 리간드 교환반응성을 핵자기공명 분광법으로 고찰하였다. crown ether 거대고리 리간드들은 실험에 사용한 모든 금속이온과 안정한 착물을 형성하므로 OCH2 메틸렌 양성자들은 모두 낮은 자기장 방향으로 화학적 이동을 나타냈으며 같은 금속이온에 대한 화학적 이동값은 12C4<15C5<18C6의 순으로 증가하였고 같은 리간드에 대한 희토류 착물의 화학적 이동값은 원자번호 크기에 반비례하였다. crownand 22는 우라늄(Ⅵ)과 산소 및 질소원자를 배위하는 안정한 착물을 형성하지만 희토류 금속과는 착물을 형성하지 않았다. 반면에 희토류 금속(Ⅲ)이온은 cryptand 221리간드와 모든 산소 및 질소원자를 배위자로 하는 안정한 착물을 형성할 수 있었다. 나머지 질소와 산소원자를 포함한 crownand 계열 거대고리 리간드는 우라늄(Ⅵ)과 역시 모든 산소 및 질소가 배위하는 착물을 형성하지만 희토류 금속(Ⅲ)과는 착물을 형성하지 않음을 확인할 수 가 있었다. 우라늄(Ⅵ)과 희토류(Ⅲ)금속이온은 모든 거대고리 리간드와 1:1착물을 각각 형성하며 토륨(Ⅳ)이온은 12C4와 1:2 나머지 리간드와는 1:1착물을 각각 형성함을 알 수 있었다. 이들 거대고리 리간드 착물들의 안정성은 착물의 양성자 이동결과에 잘 일치하였다. 그리고 18C6와 물을 리간드로 하는 희토류 금속(Ⅲ) 착물은 아세틸아세톤 용매내에서 리간드 교환반응이 일어나지만 우라늄(Ⅵ)착물의 경우에는 교환반응이 일어나지 않았다.

  • PDF

새로운 수용성 하이드레이트 시스템에 대한 미세 분광학적 분석연구 (Microscopic Analysis on New Water-soluble Hydrate Systems)

  • 이종원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.215.1-215.1
    • /
    • 2010
  • 가스 하이드레이트는 작은 고체 부피 내에 막대한 양의 가스를 저장할 수 있다는 특성으로 인하여, 최근 천연가스 혹은 메탄의 저장 매체로 활용하기 위한 연구가 활발히 진행중에 있다. 하지만 실제 응용을 위해서는 미세구조 분석이 수행되어 하이드레이트 형태로 저장할 수 있는 정확한 저장 용량을 파악할 필요가 있다. 본 연구에서는 여러가지의 고리형 에테르, 고리형 에스테르 및 고리형 케톤 화합물들을 테스트하여 메탄 가스와 반응하는 6가지의 새로운 sII 혹은 sH 하이드레이트 형성제를 파악하였다. 또한 새로이 발견된 형성제 모두에 대하여 하이드레이트 상평형도 측정하였다. 얻어진 상평형 데이터는 하이드레이트 안정영역과 게스트 분자 크기 간에 뚜렷한 상관관계가 있음을 입증하였다. 아울러 형성된 하이드레이트 샘플은 고체 분말 X-선 회절과 고체상 13C NMR 분석을 수행하여 하이드레이트 구조와 게스트 포집률을 조사하였다. 마지막으로, 비슷한 화학 구조식을 갖고 있음에도 2-methyltetrahydrofuran과 3-methyltetrahydrofuran, 혹은 4-methyl-1,3-dioxane과 4-methyl-1,3-dioxolane은 서로 다른 하이드레이트 결정 구조를 보여 주었는데, 이러한 차이는 하이드레이트 결정 구조를 결정짓는 게스트 분자 크기, 즉 임계 게스트 분자 크기를 파악하는 데에도 매우 유용한 정보를 제공할 수 있을 것이라 판단된다.

  • PDF

이중고리 합성에 블록제로서 이용된 피란과 피리딘 (Pyran and Pyridine as Building Blocks in Heterocyclic Synthesis)

  • El-Hashash, Maher.A.;El-Sawy, Abdallah.A.;Eissa, Abdelmonem.M.F.
    • 대한화학회지
    • /
    • 제53권3호
    • /
    • pp.308-324
    • /
    • 2009
  • 현재 수행하는 작업은 피페리딘 또는 암모늄 아세테이트 존재하에서 malononitrile와 $\beta$- aroylacrylic acid 유도체의 DMF 용매조건에서 상호작용에 대한 연구이며, 형성된 화합물을 이용한 퓨즈 되고 단리된 이중고리화 시스템의 합성에 관한 것이다. $\beta$-aroylacrylic acid (3)이 DMF 용매와 피페리딘 촉매조건에malononitrile와 반응하여 4H-피란유도체(4)를 형성한다. 촉매를 암모늄아세테이트로 바꿈으로서 피리딘 유도체를 얻었다. 또한 N-말레암산 유도체 (19)와 (27)은 말레 무수물과 함께 (4)와 (5)의 반응을 경유하여 합성되었다. 마이클 첨가 반응에서 이용되는 메틸렌화합물에 관한 이 연구는 B-aroylacrylic acid의 경우와 유사하게 형성된 말레암산 유도체의 반응성에 대한 것이다.

이가철 거대고리 리간드의 착화합물과 산소 분자간의 반응 : 이가철 거대고리 리간드 착화합물의 산화성 탈수소 반응에 의한 새로운 불포화 고리계의 합성 (Reaction of the Fe(II) Macrocyclic Complexes with Dioxygen : Preparation of New Unsaturated Ring Systems by Oxidative Dehydrogenation Reactions of Fe(II) Macrocyclic Ligands)

  • 백명현;강신걸;우규환
    • 대한화학회지
    • /
    • 제28권6호
    • /
    • pp.384-392
    • /
    • 1984
  • 완전히 포화된 거대고리 리간드의 Fe(II) 착화합물 [Fe([14]aneN$_4)(CH_3CN)_2]^{2+}$과 ([14]ane$N_4$:1,4,8,11-tetraazacyclotetradecane) 산소분자간의 반응을 아세토니트릴 용액중에서 연구하였다. [Fe([14]aneTEX>$_4)(CH_3CN)_2]^{2+}$는 산소와 쉽게 반응하여 낮은 스핀 Fe(III) 착화합물 [Fe([14]aneN$_4)(CH_3CN)_2]^{3+}$을 생성하고 이는 다시 산화성 탈수소 반응에 의해 낮은 스핀 Fe(II) 착화합물 [Fe([14]tetraeneN$_4)(CH_3CN)_2]^{2+}$을 형성한다. [Fe([14]tetraeneN$_4)(CH_3CN)_2]^{2+}$의 리간드는 불포화도가 매우 높고 이중결합이 컨쥬게이션 되어 있다. 또한 반응의 중간체로서 [Fe([14]dieneN$_4)(CH_3CN)_2]^{2+}$ 및 [Fe([14]dieneN$_4)(CH_3CN)_2]^{3+}$도 분리되었다. 이 반응과 관련된 Fe(II) 착화합물들은 일산화탄소와 반응하여 [FeL(CH$_3CN)(CO)]^{2+}$ (L = 거대고리 리간드) 형태의 착화합물을 이룬다. [FeL(CH$_3CN)(CO)]^{2+}$$v_{CO}$ 값과 [FeL(CH$_3CN_2)^{2+}$의 Fe(II) ${\to}$ Fe(III)의 전기화학적 산화포텐셜 및 산소에 대한 정성적인 안전성은 거대고리 리간드의 불포화도가 높아질수록 증가한다.

  • PDF

Microwave Assisted Reaction of Condensed Thiophenes With Electron Poor Olefins

  • Al-zaydi, Khadijah M.;Elnagdi , Mohamed H.
    • 대한화학회지
    • /
    • 제47권6호
    • /
    • pp.591-596
    • /
    • 2003
  • 아미노싸이에노피리다진(1a, b)과 아미노싸이에노쿠마린(2)은 DMFDMA와 축합반응을 하여 아미딘(3a, b)을 형성한다. 이 화합물들을 N-페닐말레이마이드와 반응시키면 화합물 9와 10이 얻어진다. 반면에 3a, b, 4, 18, 19, 20을 말레산 무수물과 반응시키면 포밀 유도체인 5a, b, 6, 21, 22, 23 들이 얻어진다. 아미딘 화합물 3a, b 를 다이에틸 퓨마레이트와 반응시키면 가수분해산물인 아미딘 14를 거쳐 11이 얻어진다. N-페닐말레이마이드를 마이크로웨이브 오븐에서 반응시키면 [2+2]와 [2+2+2] 고리첨가반응 산물이 얻어진다.