• Title/Summary/Keyword: 고도 유지 제어

Search Result 311, Processing Time 0.034 seconds

Properties of Blocking Filter as a function fo Magnetic Core shapes for Power Line Communication (자심재료의 형상에 따른 전력선 통신용 블로킹 필터의 특성)

  • Kim, Hyun-Sik;Lee, Hae-Yon;Ji, Min-Kwon;Oh, Young-Woo;Byun, Woo-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.230-230
    • /
    • 2007
  • 전력선 통신(Power Line Communication)은 최근 전력선을 이용한 통신기술의 발달과 더불어 세계적으로 관심도가 높아지고 연구 개발 및 자본 투자가 활발히 진행되고 있으며, 안정적인 네트워크를 구성하기 위해서는 고주파 전력선 통신 신호를 차단하는 블로킹 필터가 반드시 적용되어야 한다. 전력선 통신용 블로킹 필터는 광대역의 주파수 특성과 높은 신호감쇄 특성 및 대전류 특성이 요구되며, 이러한 특성을 구현하기 위해서는 블로킹 필터의 핵심부품인 자심재료의 고투자율 및 대전류화가 이루어져야 한다. 따라서 본 연구에서는 우수한 전 자기적 특성이 균일하게 유지되고, 전력선에 흐르는 대전류에 의한 자심재료의 포화가 발생하지 않도륵 새로운 자심 재료를 설계하여, 전력선 통신을 적용한 홈 네트워크 구축의 핵심 부품인 광대역 블로킹 필터를 개발하고자 하였다. 2350과 0.3 T의 투자율과 포화자속 밀도를 갖는 EI 형상의 자심재료를 해석모델로 설정하고 다중 에어 갭의 위치에 따른 전류와 자속밀도 변화를 유한요소 해석법으로 분석한 결과 자심재료의 대전류 특성에 지배적인 영향을 미치는 에어 캡의 삽입 위치를 알 수 있었고, 새로운 해석 모델인 I 형상의 로드(ROD) 코어에 대해 수치해석을 수행하여, 100A의 통전 전류에서도 자기적으로 포화되지 않고 인덕턴스의 정밀 제어가 가능하고, 특성의 신뢰성과 대전류에 대한 안정성을 증가시킬 수 있는 인덕터를 설계하였다. 또한 수동소자를 이용한 LC 공진회로를 기본 구성으로 하고, 주파수 대역, 신호 감쇄율과 대전류 특성, 상용화를 고려하여 블로킹 필터 회로를 설계하였으며, 유한요소해석법을 적용한 전자장 모의해석을 통하여 최소의 크기를 갖는 I 형상의 자심재료에 $6{\Phi}$의 에나멜 동선을 6.5턴, 6턴 권선하여 2.5, $2.15\;{\mu}H$의 인덕턴스를 갖는 직렬 인덕터를 구현하였고 블로킹 필터를 구성하였다. 주파수에 따른 신호감쇄 특성을 5 Hz~1 MHz의 주파수 범위에서 측정한 결과 약 490 kHz~450 kHz의 주파수 대역에서 -70dB의 신호감쇄 특성을 나타냈다. 본 연구를 통해 개발된 100A급 광대역 블로킹 필터가 적용되어 상용화 될 수 있을 것으로 판단되며, 또한 모뎀 통신 주파수 대역에서 -70dB 이상의 높은 감쇄 특성을 갖기 때문에 신호차단 특성이 보다 우수할 것으로 사료된다.

  • PDF

The Processing control of NiCuZn Ferrite (I) - Mixing and Size Reduction of Raw Materials by Wet Ball Milling. (NiCuZn Ferrite의 제조공정 제어 (제1보) - 습식 볼밀링에 의한 다성분 원료의 혼합 및 분쇄 공정의 고찰)

  • 류병환;김선희;최경숙;고재천
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.6
    • /
    • pp.928-936
    • /
    • 1995
  • In this research, the processing control of NiCuZn Ferrite has been developed. The mixing and the size reduction of raw materials have been proceeded. In order to produce NiCuZn Ferrite, highly concentrated slurry with fixed ratio and wet ball milling were used. First, the dispersion behavior of raw mixture at the region of pH4~pH11 has been studied. Using wet ball milling operation, the best conditions of mixing and size reduction have been determined. Further more, the most suitable conditions, such as, dispersant kind, dispersant amount, milling time, and slurry concentration have been studied. The poly acrylic ammonium salt (PAN) was chosen as a suitable dispersant to have effective dispersion in basic region. The slurry of raw mixture without dispersant, showed high viscosity and poor grindability. As 0.7 wt% of PAN was added, the concentrated slurry (up to 55 vol%) was possible, and showed well grindability. After 18 h ball milling of 30 vol% of mixture slurry with 0.7 wt% of PAN, the average particle size and specific surface area of raw mixture were $0.54\mu\textrm{m}$ and $12.92m^{2}/cc$, respectively. The ball milled raw mixture, calcined at $700^{\circ}C$ for 3h, was totally changed into NiCuZn Ferrite with spinel phase.

  • PDF

Development of PLGA Nanoparticles for Astrocyte-specific Delivery of Gene Therapy: A Review (별아교세포 선택적 유전자 치료전달을 위한 PLGA 나노입자 개발)

  • Shin, Hyo Jung;Lee, Ka Young;Kwon, Kisang;Kwon, O-Yu;Kim, Dong Woon
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.849-855
    • /
    • 2021
  • Recently, as nanotechnology has been introduced and used in various fields, the development of new drugs has been accelerating. Nanoparticles have maintained blood drug concentration for extended periods of time with a single administration of the drug. The drug can then be selectively released only at the pathological site, thereby reducing side effects to other non-pathological sites. In addition, nanoparticles can be modified for selective target sites delivery for other specific diseases, with polymers being widely used in the manufacture of these nanoparticles. Poly (D,L-lactic-co-glycolic acid ) (PLGA) is one of the most extensively developed biodegradable polymers. PLGA is widely used in drug delivery for a variety of applications. It has also been approved by the FDA as a drug delivery system and is widely applied in controlled release formulations, such as in gene therapy treatments. PLGA nanoparticles have been developed as delivery systems with high efficiency to specific cell types by using passive and active targeting methods. After the development of a drug delivery system using PLGA nanoparticles, the drug is selectively delivered to the target site, and the effective blood concentration for extended periods of time is optimized according to the disease. In this review paper, we focus on ways to improve cell-specific treatment outcomes by examining the development of astrocyte selective nanoparticles based on PLGA nanomaterials for gene therapy.

Analysis of Water Quality Variation by Lowering of Water Level in Gangjeong-Goryong Weirin Nakdong River (낙동강 강정고령보 수위저하 운영에 따른 수질 변동특성 분석)

  • Park, Dae-Yeon;Park, Hyung-Seok;Kim, Sung-Jin;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.245-262
    • /
    • 2019
  • The objectives of this study were to construct a three-dimensional water quality model (EFDC) for the river reach between Chilgok Weir and Gangjeong-Goryong Weir (GGW) located in Nakdong River, and evaluate the effect of hydraulic changes, such as water level and flow velocity, on the control of water quality and algae biomass. After calibration, the model accurately simulated the temporal changes of the upper and lower water temperatures that collected every 10 minutes, and appropriately reproduced changes in organic matter, nitrogen, phosphorus, and cyanobacteria. However, the simulated values were overestimated for the diatoms and green algae cell density, possibly due to the uncertainties of the parameters associated with algae metabolism and the lack of zooplankton predation function in the simulations. As a result of scenario simulation of running the water level of GGW from EL. 19.44 m to EL. 14.90 m (4.54 m drop), Chl-a and algae cell density decreased significantly.In particular,the cyanobacteria on the surface layer, which causes algal bloom, declined by 56.1% in the low water level scenario compared to the existing management level. The results of this study are in agreement with the previous studies that maintenance of critical flow velocity is effective for controlling cyanobacteria, and imply that hydraulic control such as decrease of water level and residence time in GGW is an alternative to limit the overgrowth of algae.

A study on the pyrolysis of lithium carbonate for conversion of lithium hydroxide from lithium carbonate (탄산리튬으로부터 수산화리튬 전환을 위하여 탄산리튬의 열분해에 대한 연구)

  • Park, Jae Eun;Park, Min Hwa;Seo, Hyeong Jun;Kim, Tae Seong;Kim, Dae Weon;Kim, Bo Ram;Choi, Hee Lack
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.2
    • /
    • pp.89-95
    • /
    • 2021
  • Research on the production of lithium hydroxide (LiOH) has been actively conducted in response to the increasing demand for high nickel-based positive electrode materials for lithium-ion batteries. Herein we studied the conversion of lithium oxide (Li2O) through thermal decomposition of lithium carbonate for the production of lithium hydroxide from lithium carbonate (Li2CO3). The reaction mechanism of lithium carbonate with alumina, quartz and graphite crucible during heat treatment was confirmed. When graphite crucible was used, complete lithium oxide powder was obtained. Based on the TG analysis results, reagent-grade lithium carbonate was heat-treated at 700℃, 900℃ and 1100℃ for various time and atmosphere conditions. XRD analysis showed the produced lithium oxide showed high crystallinity at 1100℃ for 1 hour in a nitrogen atmosphere. In addition, several reagent-grade lithium oxides were reacted at 100℃ to convert to lithium hydroxide. XRD analysis confirmed that lithium hydroxide (LiOH) and lithium hydroxide monohydrate (LiOH·H2O) were produced.

Actual State of Structures and Environmental Control Facilities for Tomato Greenhouses in Chungnam Region (충남지역 토마토 재배온실의 구조와 환경조절설비 실태분석)

  • Nam, Sang-Woon;Kim, Young-Shik
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.1
    • /
    • pp.73-85
    • /
    • 2009
  • An investigation was conducted to get the basic data for establishing structural safety and environmental management of tomato greenhouses in Chungnam region. The contents of the investigation consisted of actual state of greenhouse structures and environmental control facilities. Most of greenhouses were arch type single-span plastic houses and they had too low height for growing tomatoes. Frameworks of multi-span greenhouses were suitable, but those of single-span were mostly insufficient. Every greenhouse had thermal curtain movable or covering fixed inside the greenhouse for energy saving, and heating facilities were mostly warm air heater. Irrigation facilities were mostly drip tube and controlled by manual operation or timer. Almost all of the greenhouses didn't install high level of environmental control facilities such as ventilator, air circulation fan, $CO_2$ fertilizer, insect screen, supplemental light, and cooling device.

  • PDF

Seasonal Phytoplankton Growth and Distribution Pattern by Environmental Factor Changes in Inner and Outer Bay of Ulsan, Korea (울산만 내측과 외측에서 계절적 환경요인의 변화에 의한 식물플랑크톤 성장 및 분포)

  • LEE, MIN-JI;KIM, DONGSEON;KIM, YOUNG OK;SOHN, MOONHO;MOON, CHANG-HO;BAEK, SEUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.1
    • /
    • pp.24-35
    • /
    • 2016
  • To assess the relationship between environmental factors and seasonal phytoplankton community structure, we investigated abiotic and biotic factors in Ulsan Bay, Korea. We divided the bay into two areas based on geographical characteristics and compared the difference in each factor between inner and outer bay with t-test statistics. As a result, temperature in the outer bay was higher than that of the inner bay during winter (t = -5.833, p < 0.01) and autumn (p > 0.05). However, opposite trend was observed during spring (t = 4.247, p < 0.01) and summer (t = 2.876, p < 0.05). Salinity was significantly lower in the inner bay than in the outer bay in winter, spring, and summer (p < 0.01). However, the salinity was not significantly different between the inner and the outer bay in the autumn (p > 0.05). In particular, high nutrient concentration was observed in most stations during winter season due to vertical well mixing. The nutrient concentration was significantly higher in surface layers of inner bay after rainfall, particularly in the summer. The relative contribution (approximately 70%) of < $20{\mu}m$ (nano and pico) size phytoplankton was increased in all seasons with continuously low nutrients from the offshore water due to their adaption to low nutrient without other large competitors. Interestingly, high population of Eutreptiella gymnastica was kept in the inner bay during the spring and summer associated with high DIN (nitrate+nitrite, ammonium) after river discharge following rainfall, suggesting that DIN supply might have triggered the increase of Eutreptiella gymnastica population. In addition, high density of freshwater species Oscillatoria sp. and Microcystis sp. were found in several stations of the inner bay that were provided with large amounts of freshwater from the Tae-wha River. Diatom and cryptophyta species were found to be dominant species in the autumn and winter. Of these, centric diatom Chaetoceros genus was occupied in the outer bay in the autumn. Cryptophyta species known as opportunistic micro-algae were found to have high biomass without competitors in the inner bay. Our results demonstrated that Ulsan Bay was strongly affected by freshwater from Tae-wha River during the rainy season and by the surface warm water current from the offshore of the bay during dry season. These two external factors might play important roles in regulating the seasonal phytoplankton community structures.

Improvement of Energy Efficiency of Plants Factory by Arranging Air Circulation Fan and Air Flow Control Based on CFD (CFD 기반의 순환 팬 배치 및 유속조절에 의한 식물공장의 에너지 효율 향상)

  • Moon, Seung-Mi;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2015
  • As information technology fusion is accelerated, the researches to improve the quality and productivity of crops inside a plant factory actively progress. Advanced growth environment management technology that can provide thermal environment and air flow suited to the growth of crops and considering the characteristics inside a facility is necessary to maximize productivity inside a plant factory. Currently running plant factories are designed to rely on experience or personal judgment; hence, design and operation technology specific to plant factories are not established, inherently producing problems such as uneven crop production due to the deviation of temperature and air flow and additional increases in energy consumption after prolonged cultivation. The optimization process has to be set up in advance for the arrangement of air flow devices and operation technology using computational fluid dynamics (CFD) during the design stage of a facility for plant factories to resolve the problems. In this study, the optimum arrangement and air flow of air circulation fans were investigated to save energy while minimizing temperature deviation at each point inside a plant factory using CFD. The condition for simulation was categorized into a total of 12 types according to installation location, quantity, and air flow changes in air circulation fans. Also, the variables of boundary conditions for simulation were set in the same level. The analysis results for each case showed that an average temperature of 296.33K matching with a set temperature and average air flow velocity of 0.51m/s suiting plant growth were well-maintained under Case 4 condition wherein two sets of air circulation fans were installed at the upper part of plant cultivation beds. Further, control of air circulation fan set under Case D yielded the most excellent results from Case D-3 conditions wherein air velocity at the outlet was adjusted to 2.9m/s.

Dynamic Behavior of Reactor Internals under Safe Shutdown Earthquake (안전정기지진하의 원자로내부구조물 거동분석)

  • 김일곤
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.95-103
    • /
    • 1994
  • The safety related components in the nuclear power plant should be designed to withstand the seismic load. Among these components the integrity of reactor internals under earthquake load is important in stand points of safety and economics, because these are classified to Seismic Class I components. So far the modelling methods of reactor internals have been investigated by many authors. In this paper, the dynamic behaviour of reactor internals of Yong Gwang 1&2 nuclear power plants under SSE(Safe Shutdown Earthquake) load is analyzed by using of the simpled Global Beam Model. For this, as a first step, the characteristic analysis of reactor internal components are performed by using of the finite element code ANSYS. And the Global Beam Model for reactor internals which includes beam elements, nonlinear impact springs which have gaps in upper and lower positions, and hydrodynamical couplings which simulate the fluid-filled cylinders of reactor vessel and core barrel structures is established. And for the exciting external force the response spectrum which is applied to reactor support is converted to the time history input. With this excitation and the model the dynamic behaviour of reactor internals is obtained. As the results, the structural integrity of reactor internal components under seismic excitation is verified and the input for the detailed duel assembly series model could be obtained. And the simplicity and effectiveness of Global Beam Model and the economics of the explicit Runge-Kutta-Gills algorithm in impact problem of high frequency interface components are confirmed.

  • PDF

Epidermal Changes of the Adhesive Disks During Wall Attachment in Parthenocissus tricuspidata (착생에 따른 담쟁이덩굴 흡착근 표피조직의 변화)

  • Kim, Jung-Ha;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.37 no.2
    • /
    • pp.83-91
    • /
    • 2007
  • The present study examined the epidermal changes of adhesive disks which occur during attachment in Parthenocissus tricuspidata using scanning and transmission electron microscopy. Several adhesive disks, each covered with a bract, develop from the shoot apical meristem during early development. In the initial stage, the adhesive disks are club-shaped and their upper and lower epidermis are indistinguishable. However, in the actively growing stage, they become spherical and both epidermis are clearly differentiated into the adventitious roots. Prior to wall attachment, the adhesive disks exhibit adaxial convex and abaxial concave shapes, and electron-dense substances are abundant in the vacuoles of epidermal cells. The peripheral area of the adhesive disk is adhered first to the wall surface, while the central area is drawn inward in a vacuum-like state during attachment. As the attachment progresses and the electron-dense substances continue to discharge, the upper and lower epidermis rapidly undergo deterioration and the disks shrink considerably. At this stage, structural changes of the lower epidermis occur much faster than in the upper one. The discharged substance is accumulated on the wall surface, and this aids the attachment of adhesive disks on the wall for long periods. In this manner, the shape and structure of the adhesive disk epidermis change drastically from initial growth to the mature stage. Further, the role of electron-dense substance and shrinkage of the disk during attachment has been discussed in Parthenocissus tricuspidata.