• Title/Summary/Keyword: 고도정수처리

Search Result 122, Processing Time 0.023 seconds

Investigation of Treatment Efficiency for Advanced Processes of Water Treatment Plants in Korea (국내 정수장 고도정수처리 공정에서 공정별 처리효율 조사)

  • Mun, Sung-Min;Choi, Suing-Il;Sohn, Jin-Sik;Yoon, Je-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.323-329
    • /
    • 2005
  • Advanced processes such as ozonation or activated carbon filtration (ACF) in water treatment plants have been used in Korea since 1994. At present, seventeen drinking water treatment plants are currently operating. This survey compares the treatment performance of advanced processes in eight plants which have comparable water quality data. The three parameters (DOC, $UV_{254}$, and $KMnO_4$ consumption) of water quality were selected as an indicator of treatment efficiency. The treatment efficiency of ozonation and ACF processes was found to vary with large deviations in each plant. Treatment efficiency of DOC, $UV_{254}$, and $KMnO_4$ consumption by post ozonation ranged from 3 to 11%, 6 to 33%, and 12 to 28% respectively. On the other hand, for ACF, treatment efficiency of DOC, $UV_{254}$, and $KMnO_4$ consumption ranged from 7 to 38%, 8 to 48%, and 16 to 66% respectively. These large deviations indicate the advanced processes of water treatment plants to be further optimized.

Techniques for Characterizing Surface Deterioration of Epoxy Exposed to Ozone Damage (오존에 노출된 에폭시 코팅재의 표면 열화특성 평가기술)

  • Choi, Sung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.167-177
    • /
    • 2014
  • New technologies for water purification are continuously emerging to address global water quality problems, and one such technology involves advanced hermetic water purification facilities made by concrete that utilize ozone treatment processes. Better knowledge about surface deterioration of epoxy coating exposed to ozone treatment is needed as a foundation for development of improved methods and materials in the future. This study utilized atomic force microscopy (AFM), nanoindentation methods, and existing indirect methods such as visual observation, changes in mass, surface observation and chrominance analysis, to evaluate epoxy water-resistance and anti-corrosiveness. This study considered six different epoxy formulations to assess typical degradation characteristics of epoxy surfaces with regard to water-resistance/anti-corrosiveness. AFM and nanoindentation techniques emerged as promising direct methods with potential to provide quantitative measures of surface quality that are improvements upon existing indirect methods. The experiments also confirmed that some of the epoxy-coatings were severely iMPacted by ozone exposure, and thus the results demonstrate that concern about such deterioration is justified.