• Title/Summary/Keyword: 고도각

Search Result 1,120, Processing Time 0.046 seconds

A study on the Construction and the Transition of Daebodan in the Late Josun Dynasty (조선후기 창덕궁 대보단의 조성과 변천에 관한 연구)

  • LEE Yeonro
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.4
    • /
    • pp.96-116
    • /
    • 2022
  • The Daebodan was an altar, which held a memorial service for emperors of the Ming dynasty. This alter, which was referred to as Hwangdan, was first constructed in 1704. When the Japanese Invasion of Korea commenced in 1592, Shinjong, the emperor of the Ming dynasty, sent reinforcements to Josun to help. This alter was made to repay Shinjong's kindness. Before this, Song-siyeol(宋時烈), Leader of Noron(老論), made a shrine at Hwayangdong to hold memorial services for Shinjong, and after some time, this developed into a national ceremony. Construction of the Daebodan largely changed the backyard of Changdukgung-palace. However considering the construction process, the meaning of the Daebodan was not a big deal. At first, the optimal place for the Daebodan was selected at the site of a inner icehouse. But the inner icehouse could not be transferred to other site due to the circumstances. After all, the Daebodan was constructed at the site of Byeoldaeyeong(別隊營) which was located in the outside of palace. Most of the stones for the new Daebodan were used ones. And the annexe of Byeoldaeyeong was used for Daebodan without any changes being made. The scale of the construction was not particularly grand. After the construction, Sukjong, who made the Daebodan, showed barely any interest in it. But the conception of the Daebodan was back again in the history by Youngjo. He was also not interested in the Daebodan during his early years of ruling time. However, in the 1740's, he started to become interested in the ceremony of Daebodan, and carried out a large-scale reconstruction of the Daebodan. Jegigo(祭器庫) was rebuilt In 1739. And Jaesil(齋室), staying one night before the ceremonial day, was added in 1745. In 1749, the Daebodan was greatly changed by enshrining Uijong and Taejo, emperors of the Ming dynasty. The shape of alter was changed. Moreover this alter was made by newly quarried stones. And several buildings, Junsachung(典祀廳), Jaesaengchung(宰牲廳) and Akgongchung(樂工廳), were added to the site. In 1762, meritorious retainers were enshrined to the Daebodan. After all the Daebodan became an important part of the backyard of Changdukgung-palace. During the reign of Jungjo, the Daebodan also was an important part of backyard of Changdukgung-palace. But significant changes were not made at that time. The only change was the moving of Kyungbonggak(敬奉閣) in 1799. Afterward the Daebodan remained unchanged. The ceremonies at the Daebodan stopped in 1908. And the Daebodan disappeared into the mist of history.

Assessment of the Contribution of Weather, Vegetation and Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (II) - Calibration, Validation and Application of the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지 유역과 하천유역에 미치는 기여도 평가(II) - 모형의 검·보정 및 적용 -)

  • Park, Geun-Ae;Ahn, So-Ra;Park, Min-Ji;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.121-135
    • /
    • 2010
  • This study is to assess the effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water supply using the SLURP. Before the future analysis, the SLURP model was calibrated using the 6 years daily streamflow records (1998-200398 and validated using 3 years streamflow data (2004-200698 for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang8 and Gosam98located in Anseongcheon watershed. The calibration and validation results showed that the model was able to simulate the daily streamflow well considering the reservoir operation for paddy irrigation and flood discharge, with a coefficient of determination and Nash-Sutcliffe efficiency ranging from s 7 to s 9 and 0.5 to s 8 respectively. Then, the future potential climate change impact was assessed using the future wthe fu data was downscaled by nge impFactor method throuih bias-correction, the future land uses wtre predicted by modified CA-Markov technique, and the future ve potentiacovfu information was predicted and considered by the linear regression bpowten mecthly NDVI from NOAA AVHRR ima ps and mecthly mean temperature. The future (2020s, 2050s and 2e 0s) reservoir inflow, the temporal changes of reservoir storaimpand its impact to downstream streamflow watershed wtre analyzed for the A2 and B2 climate change scenarios based on a base year (2005). At an annual temporal scale, the reservoir inflow and storaimpchange oue, anagricultural reservoir wtre projected to big decrease innautumnnunder all possiblmpcombinations of conditions. The future streamflow, soossmoosture and grounwater recharge decreased slightly, whtre as the evapotransporation was projected to increase largely for all possiblmpcombinations of the conditions. At last, this study was analysed contribution of weather, vegetation and land use change to assess which factor biggest impact on agricultural reservoir and stream watershed. As a result, weather change biggest impact on agricultural reservoir inflow, storage, streamflow, evapotranspiration, soil moisture and groundwater recharge.

The Effect of CEO's Entrepreneurship on Intra-organization Innovation through Creative self-efficacy and the Moderating Effect of Organizational Commitment (창의적 효능감을 통해 조직 내 혁신을 유발하는 CEO의 기업가정신과 조직몰입의 조절효과)

  • Kim, Sun-Wang;Sung, Eul-Hyun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.2
    • /
    • pp.45-61
    • /
    • 2024
  • This study looked in-depth at the importance of cultivating and manifesting entrepreneurship, which is emphasized for companies to gain a competitive advantage and promote innovation in the uncertain environment that organizations face and in the development of technology due to recent industrial advancement, the following innovative performance, and the mechanisms in the performance process. Entrepreneurship is emphasized as a key factor in inducing creative work performance, creation and application of new ideas, and innovative performance at various levels within the organization in various global companies. In particular, this study examined the influence of the CEO's cultivation and expression of entrepreneurship as an organizational leader on the innovative behavior of organizational members, which is a leading factor in the organization's innovative performance, and the role of creative self-efficacy as a mechanism. Through this, the study was to verify the importance of creativity and cultivating a sense of self-efficacy for demonstrating innovative performance within an organization. Additionally, it was to confirm the role of organizational commitment of organizational members as a situational factor. For the empirical analysis, a total of 247 office workers were surveyed, sampled from 10 venture companies engaged in the manufacturing industry in industrial complexes in Daejeon, Korea. As the result of empirical analysis showed, it was confirmed that each sub-factor of the CEO's entrepreneurship had a positive effect on the innovative behavior of organizational members. And in the process, the importance of the creative self-efficacy of members to demonstrate innovative performance was verified by confirming positively significant mediating effect of creative self-efficacy. Furthermore, in the case of organizational commitment, it was found that the innovativeness and proactiveness of the CEO strengthened the positive influence on the creative efficacy of the organization members. Based on the results of empirical analysis, theoretical and practical implications were provided to improve the importance of cultivating and manifesting the CEO's entrepreneurship to demonstrate innovation within the organization.

  • PDF

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF

Studies on the Effects of Several Factors on Soil Erosion (토양침식(土壤侵蝕)에 작용(作用)하는 몇가지 요인(要因)의 영향(影響)에 관(關)한 연구(硏究))

  • Woo, Bo Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.29 no.1
    • /
    • pp.54-101
    • /
    • 1976
  • This study was conducted on the major factors affecting soil erosion and surface run-off. In order to investigate the processes and mechanisms of soil erosion on denuded forest-land in Korea, and to systematize the magnitudes of influences and interactions between individual factors, the five major factors adopted in these experiments are soil textures (coarse sand and clay loam), slope steepness ($10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $40^{\circ}$), rainfall intensities (50, 75 and 100mm/hr), slope mulching methods (bare, coarse straw-mat mulching, grass mulching and anti-erosion liquid mulching) and vegetation densities (sparse, moderate and dense). The processes and mechanisms of soil erosion, and the effects of mulchings on soil erosion as well as surface run-off rates were studied algebraically with four parts of laboratory experiments under the simulated rainfall and another part of field experiment under the natural rainfall. The results in this study are summarized as follows: 1. Experiment factors and surface run-off rates The surface run-off rates under the natural rainfall were resulted about 24.7~28.7% from the bare slopes, about 14.0~16.4% from the straw-mat mulched slopes, about 7.9~9.1% from the liquid mulched slopes, and about 5.6~7.2% from the grass mulched slopes respectively. The surface run-off rates under the simulated rainfall differed greatly according to the rainfall intensity and the mulching method. 2. Magnitudes of influences and interactions of the individual factor on the surface run-off rates. The experimental analyses on the major factors(soils, slopes, rainfalls, mulchings and vegetations) affecting the rates of surface run-off, show that the mean differences of surface run-off rate are significant at 5% level between the soil texture factors, among the slope steepness factors, among the rainfall intensity factors, among the mulching method factors, and among the vegetation density factors respectively. The interactions among the individual factor have a great influence(significant at 1% level) upon the rate of surface run-off, except for the interactions of the factors between soils and slopes; between slopes and vegetations; among soils, slopes and rainfalls; and among soils, slopes and mulchings respectively. On the bare slopes under the simulated rainfall, the magnitude of influences of three factors(soils, slopes and rainfalls) affecting the rate of surface run-off is in the order of the factor of rainfalls, soils and slopes. The magnitude of influences of three factors (soils, rainfalls and mulchings) affecting the rate of surface run-off, on the mulched slopes under the simulated rainfall is in the order of the factor of mulchings, rainfalls and soils and that of influences of the factor of soils, slopes and mulchings is in the order of the factor of mulchings, soils and slopes. On the vegetation growing slopes under the simulated rainfall, the magnitude of influences of three factors (soils, slopes and vegetations) affecting the rate of surface run-off is in the order of the factor of vegetations, soils and slopes. In the same condition of treatments on the field experiment under the natural rainfall, the order of magnitude of influences affecting the rate of surface run-off is the factor of mulchings, soils and slopes. 3. Experiment factors and soil losses The soil losses of the experiment plots differed according to the factors of soil texture, slope steepness, rainfall intensity and mulching method. The soil losses from the coarse soil were increased about 1.1~1.3 times as compared with that of fine soil under the natural rainfall, while the soil losses from the fine soil were increased about 1.2~1.3 times compared with that of coarse soil under the simulated rainfall. The equation of $E=aS^b$ (a, b are constant) between the slope steepness (log S) and soil losses (log E) under the simulated rainfall were developed. The equation of $E=aI^b$ (a, b are constant) between the rainfall intensity (log I) and soil losses (log E) were developed, and b values have a decreasing tendency according to the increase of the slope steepness and rainfall intensity. The soil losses under the natural rainfall were appeared about 38~41% from the coarse straw-mat mulched slopes, about 20~22% from the liquid mulched slopes, about 14~15% from the grass mulched slopes as compared with that of the bare slopes respectively. The soil loss from the vegetation plots showed about 7.1~16.4 times from the sparse plot, about 10.0~17.9 times from the moderate plot and about 11.1~28.1 times from the dense plot as compared with that of the bare slopes. 4. Magnitudes of influences and interactions of the individual factor on the soil erosion. The experimental analyses on the major factors(soils, slopes, rainfalls, mulchings and vegetations) affecting the soil erosion, show that the mean differences of soil losses are highly significant between the soil texture factors, among the slope steepness factors, among the rainfall intensity factors, among the mulching method factors and among the vegetation density factors respectively. The interactions among the individual factor have mostly great influences upon the soil erosion. The magnitude of influences of three factors (soils, slopes and rainfalls) affecting the soil erosion on the bare slopes under the simulated rainfall is in order of the factor of rainfalls, soils and slopes. On the mulched slopes under the simulated rainfall, the magnitude order of influences of three factors(soils, rainfalls and mulchings) affecting the soil erosion is the factor of mulchings, rainfalls and soils, and the order of influences of factor of soils, slopes and mulchings is the factor of mulchings, soils and slopes. On the vegetation growing slopes under the simulated rainfall, the magnitude of influences of three factors (soils, slopes and vegetations) affecting the soil erosion is in the order of the factor of slopes. vegetations and soils. In the same condition of treatments on the field experiment under the natural rainfall, the order of magnitude of influences of three factors (soils, slopes and mulchings) affecting the soil erosion is the factor of mulchings, of slopes and of soils.

  • PDF

Studies on the Species Crossabilities in the Genus Pinus and Principal Characteristics of F1 Hybrids (일대잡종송(一代雜種松)의 교배친화력(交配親和力)과 특성(特性)에 관(關)한 연구(硏究))

  • Ahn, Kun Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.16 no.1
    • /
    • pp.1-32
    • /
    • 1972
  • By means of the interspecific hybridization in the Sub-genus Diploxylon of the Genus Pinus, $F_1$ hybrids of Pinus rigida${\times}$elliottii, Pinus rigida${\times}$radiata, P. rigida${\times}$serotina and P. densiflora${\times}$thunbergii had been produced. And on the basis of the crossabilities of these hybrids the taxonomic affinities of these pines were examined. And the needle characteristics of these hybrid and the occurence of phenolic substances in these $F_1$ hybrid were also investigated to see the potential usefulness of these characteristics for the diagnosis of the taxonomic affinity. And, the growth performances of the $F_1$ hybrids have also been compared with those of parental species. In order to contribute to the establishment of the hybrid seed orchard the introgression phenomena between P. densiflora and P. thunbergii in the eastern coastal area have also been investigated along with the investigation of the heterozygosity of plus trees of P. densiflora growing in the clone bank in Suwon. And the results were summarized as follows. 1. On the basis of crossabilities as well as on the taxonomic affinities according to the systems of Shaw, Pilger and Duffield, it has been proven that the parental species of those hybrids are of close affinities and range of the fertile hybrid seed production rate was as high as 28-58% in the best hybrid combination (Table 13). 2. Among those hybrids, the ${\times}$ Pinus, rigiserotina hybrid seemed to be most promising in the growth performance exhibiting 109-155% more volume growth compared to the seed parent with the statistic significance of 1% level (Tables 16 and 17). 3. Notwithstanding the fact that the all of the pollen parents are cold tender, all hybrids exhibit cold hardiness as much as their seed parent and it seems to suggest that the characteristics of cold hardiness were transmitted from the seed parent. 4. Though a striking difference in needle length was observed between the parental species of each hybrid, it was difficult to distinguish each hybrid from their seed parent by the needle length except ${\times}$P. rigiserotina which is characterized by long needle which is 65% more longer than the needle of the seed parent (Table 21). 5. With regard to the anatomical characteristics of needle, the hypoderm is apparently thicker in most of the $F_1$ hybrid pines and the characteristics of resin canals are dominated by medial in most $F_1$ hybrid. And, the fibrovascular bundles were apart as were in their seed parent. Therefore it was found to be possible to distinguish the hybrids pines from their parents by the needle characteristics. And, it is to be noticed that the ${\times}$P. densithunbergii was more close to the pollen parent having RDI value of 0.73 (Fig.l, Table 22). 6. It has been demonstrated that ${\times}$P. rigielliottii, ${\times}$P. rigiradiata and ${\times}$P. rigitaeda have a phenolic substance (No.7) of light yellow at Rf-0.46, same as their seed parent, but no trace of phenolic substance was observed in their pollen parent. This fact will serve as an important criteria for early identification of hybridity in progeny testing. However, the fact that both of ${\times}$P. rigiserotina and ${\times}$P. densithunbergii exhibit the same reactions of phenolic substances as well their parental species seems to indicate the close affinities between the parental species of the respective hybrid (Fig.2, Table 23). 7. The separation and the reaction of phenolic substance developed on TLC were found to be same in the same species showing no variations between the individuals, and no variations due to tree part of sampling, tree age or pollen sources. And the reaction was also observed regardless of the not varied by the kind of developing solvent whether it is Aceton-Chloroform (3:7 v/v) or Benzene-Methanol-Acetic acid (90:16:8 v/v). 8. The introgression phenomena of natural Pinus densifiora stand in both east and west coastal area indicates that the major part of the red pines investigated are all heterozygous and the heterozygosity of pines are higher in the west coast than in the east coast(Tables 24 and 25). 9. Based on the RDI, among the plus trees of Pinus densiflora selected in Korea and Japan as well, no pure P. densiflora has been found. Since all of the sample trees of Pinus densiflora were found to be as heterozygous bearing part of the characteristics of P. thunbergii, those red pines were considered to be natural heterotic hybrid pines(Figs. 3 and 4. Tables 26 and 27).

  • PDF

Studies on Lipids in Fresh-Water Fishes 1. Distribution of Lipid Components in Various Tissues of Crucian Carp, Carassius carassius (담수어의 지질에 관한 연구 1. 붕어(Carassius carassius)의 부위별 지질성분의 분포)

  • CHOI Jin-Ho;RO Jae-Il;PYEUN Jae-Hyeong;CHOI Kang-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.4
    • /
    • pp.333-343
    • /
    • 1984
  • This study was designed to elucidate the lipid and its fatty acid composition in various tissues of fresh water fishes. The free and bound lipids in meat, skin and viscera of crucian carp (Carassius carassius) were extracted with ethyl ether and the mixed solvent of chloroform-methanol-water (10/9/1, v/v). The free and bound lipids were fractionated into neutral lipid, glycolipid and phospholipid by a silicic acid column chromatography using chloroform, acetone and methanol, respectively, and quantitatively analyzed by thin layer chromatography (TLC) and TLC scanner. The fatty acid compositions of polar ana nonpolar lipids in meat, and these of neutral lipid in various tissues were analyzed by gas liquid chromatography(GLC). The free lipid content in meat, skin and viscera was $6.22\%,\;9.95\%\;and\;9.76\%$, whereas the bound lipid content in those tissues was $10.01\%,\;3.56\%\;and\;7.36\%$, respectively. The neutral lipid contents in free lipid were ranged from $71.7\%$ to $89.4\%$, and $3{\sim}9$ times higher than those in bound lipid, while the phospholipid contents in bound lipid were ranged from $42.3\%$ to $63.2\%$, and $5{\sim}10$ times higher than those in free lipid. The neutral lipid was mainly consisted of triglyceride ($81.91{\sim}88.34\%$) in free lipid, and esterified sterol & hydrocarbon ($41.00{\sim}59.43\%$) in bound lipid. The phospholipid was mainly consisted of phosphatidyl ethanolamine($54.56{\sim}66.79\%$) and phosphatidyl choline ($21.88{\sim}34.28\%$) in free lipid, and phosphatidyl choline ($50.49{\sim}70.57\%$) and phosphatidyl ethanolamine ($15.74{\sim}24.92\%$) in bound lipid. The major fatty acids of polar lipid in free and bound lipids were $C_{16:0}\;(17.53\%,\;19.29\%)$, $C_{18:1}\;(24.57\%,\;16.08\%)$, $C_{18:2}\;(8.39\%,\;4.03\%)$, $C_{22:5}\;(1.68\%,\;8.08\%)$, and $C_{22:6}\;(6.22\%,\;13.60\%)$ and these of neutral lipid in free and bound lipids were $C_{16:0}\;(17.67\%,\;24.15\%)$, $C_{16:1}\;(12.81\%,\;5.52\%)$, $C_{18:1}\;(24.13\%,\;13.02\%)$, $C_{18:2}\;(15.47\%,\;8.68\%)$, $C_{22:5}\;(0.88\%,\;4.14\%)$ and $C_{22:6}\;(1.17\%,\;5.04\%)$, respectively. The unsaturations (TUFA/TSFA) of polar lipid in free and bound lipids were 2.02 and 2.74, and $1.5{\sim}2.0$ times higher than 1.51 and 1.23 of nonpolar lipid. In both polar and nonpolar lipids, w3 highly unsaturated fatty acid (w3HUFA) content of bound lipid was $2{\sim}5$ times higher than that of free lipid. The polyenoic acid contents such as $C_{20:5},\;C_{22:5}\;and\;C_{22:6}$ in bound lipid were $2{\sim}5$ times higher than these in free lipid. Consequently, there were significant difference between the lipid and its fatty acid composition in free and bound lipids and/or in various tissues.

  • PDF

An Analytical Study on the Stem-Growth by the Principal Component and Canonical Correlation Analyses (주성분(主成分) 및 정준상관분석(正準相關分析)에 의(依)한 수간성장(樹幹成長) 해석(解析)에 관(關)하여)

  • Lee, Kwang Nam
    • Journal of Korean Society of Forest Science
    • /
    • v.70 no.1
    • /
    • pp.7-16
    • /
    • 1985
  • To grasp canonical correlations, their related backgrounds in various growth factors of stem, the characteristics of stem by synthetical dispersion analysis, principal component analysis and canonical correlation analysis as optimum method were applied to Larix leptolepis. The results are as follows; 1) There were high or low correlation among all factors (height ($x_1$), clear height ($x_2$), form height ($x_3$), breast height diameter (D. B. H.: $x_4$), mid diameter ($x_5$), crown diameter ($x_6$) and stem volume ($x_7$)) except normal form factor ($x_8$). Especially stem volume showed high correlation with the D.B.H., height, mid diameter (cf. table 1). 3) (1) Canonical correlation coefficients and canonical variate between stem volume and composite variate of various height growth factors ($x_1$, $x_2$ and $x_3$) are ${\gamma}_{u1,v1}=0.82980^{**}$, $\{u_1=1.00000x_7\\v_1=1.08323x_1-0.04299x_2-0.07080x_3$. (2) Those of stem volume and composite variate of various diameter growth factors ($x_4$, $x_5$ and $x_6$) are ${\gamma}_{u1,v1}=0.98198^{**}$, $\{{u_1=1.00000x_7\\v_1=0.86433x_4+0.11996x_5+0.02917x_6$. (3) And canonical correlation between stem volume and composite variate of six factors including various heights and diameters are ${\gamma}_{u1,v1}=0.98700^{**}$, $\{^u_1=1.00000x_7\\v1=0.12948x_1+0.00291x_2+0.03076x_3+0.76707x_4+0.09107x_5+0.02576x_6$. All the cases showed the high canonical correlation. Height in the case of (1), D.B.H. in that of (2), and the D.B.H, and height in that of (3) respectively make an absolute contribution to the canonical correlation. Synthetical characteristics of each qualitative growth are largely affected by each factor. Especially in the case of (3) the influence by the D.B.H. is the most significant in the above six factors (cf. table 2). 3) Canonical correlation coefficient and canonical variate between composite variate of various height growth factors and that of the various diameter factors are ${\gamma}_{u1,v1}=0.78556^{**}$, $\{u_1=1.20569x_1-0.04444x_2-0.21696x_3\\v_1=1.09571x_4-0.14076x_5+0.05285x_6$. As shown in the above facts, only height and D.B.H. affected considerably to the canonical correlation. Thus, it was revealed that the synthetical characteristics of height growth was determined by height and those of the growth in thickness by D.B.H., respectively (cf. table 2). 4) Synthetical characteristics (1st-3rd principal component) derived from eight growth factors of stem, on the basis of 85% accumulated proportion aimed, are as follows; Ist principal component ($z_1$): $Z_1=0.40192x_1+0.23693x_2+0.37047x_3+0.41745x_4+0.41629x_5+0.33454x_60.42798x_7+0.04923x_8$, 2nd principal component ($z_2$): $z_2=-0.09306x_1-0.34707x_2+0.08372x_3-0.03239x_4+0.11152x_5+0.00012x_6+0.02407x_7+0.92185x_8$, 3rd principal component ($z_3$): $Z_3=0.19832x_1+0.68210x_2+0.35824x_3-0.22522x_4-0.20876x_5-0.42373x_6-0.15055x_7+0.26562x_8$. The first principal component ($z_1$) as a "size factor" showed the high information absorption power with 63.26% (proportion), and its principal component score is determined by stem volume, D.B.H., mid diameter and height, which have considerably high factor loading. The second principal component ($z_2$) is the "shape factor" which indicates cubic similarity of the stem and its score is formed under the absolute influence of normal form factor. The third principal component ($z_3$) is the "shape factor" which shows the degree of thickness and length of stem. These three principal components have the satisfactory information absorption power with 88.36% of the accumulated percentage. variance (cf. table 3). 5) Thus the principal component and canonical correlation analyses could be applied to the field of forest measurement, judgement of site qualities, management diagnoses for the forest management and the forest products industries, and the other fields which require the assessment of synthetical characteristics.

  • PDF

Effect of Strength Increasing Sizes on the Quality of Fiberboard (섬유판(纖維板)의 증강(增强)사이즈제(齊)가 재질(材質)에 미치는 영향(影響))

  • Shin, Dong So;Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.30 no.1
    • /
    • pp.19-29
    • /
    • 1976
  • The fiberboard and paper mills in this country are much affected by the price hikes and shortage of phenolic resins, since phenolic acid as a raw material depends on imported good. It is prerequisite to fiberboard industry to help replace with other sized and stabilize the prices and supply of them, improving the quality of boards. Thus, the present study was carried out to examine the effect of strength increasing sized such as urea formaldehyde resin (anion and cation type) and urea melamine copolymer resin, on the quality of the wet forming hardboard, and comparing them with two types of proprietary modified melamine resins, and ordinary size, phenol resin. The Asplund pulp was prepared from wood wastes mixed with 20 percent of lauan and 80 percent of pines as a fibrous material. After sizing agents were added at a pH of 4.5 for 10 minutes with alum in the beater, the stock was made in the form of wet sheet, prepared, and then performed by hot pressing cycle: $180^{\circ}C$, $50-6-5kg/cm^2$, 1-2-7 minutes. The properties of hardboard were examined after air conditioning. The results obtained are summarized as follows: 1. There is a significant difference in specific gravity among hardboards that were treated with strength increasing resins, but no difference is effected by the increase in the resin content. In the case of modified melamine resin, its specific gravity is highest. The middle group comprises cation type of urea resin, anion type of urea resin, and acid colloid of urea-melamine copolymer resin. The lowest is phenolic resin. 2. The difference of the moisture content of hardboard both by the resins and by the amount of each resin applied is significant. The moisture content of hardboard becomes lower along with the increase of each resin content, but there is no difference between 2 and 3 percent. 3. For water absorption, there is a significant difference both in the adhesives used and in the amount of paraffin wax emulsion. The water resistance becomes higher inn proportion to the content of the paraffin wax emulsion. To satisfy KS F standards of the water resistance, a proprietary modified melamine resin (p-6100) and modified cation type of urea resin (p-1500) do not require any paraffin wax emulsion, but in the case of anion type of urea resin, cation type of urea resin, and urea-melamine copolymer resin, 1 percent of paraffin wax emulsion is needed, and 2 percent of paraffin wax emulsion in the case of phenolic resin. 4. The difference of flexural strength of hardboard both by the resins and by the amount of each resin is significant. Modified melamine resin shows the highest degree of flexural strength. Among the middle group are urea-melamine copolymer resin, p-1500, anion type of urea resin, and cation type of urea resin. Phenolic resin is the lowest. The cause may be attributable to factors combined with the pressing temperature, sizing effect, and thermal efficiency of press platens heated electrically. 5. Considering the economic advantages and properties of hardboard, it is proposed that urea-melamine copolymer resin and cation type of urea resin be used for the development of the fiberboard industry. It is desirable to further develop the modified urea-melamine copolymer resin and cation type of urea resin through continuous study.

  • PDF

Morphological Characteristics, and Coefficient of Variation, Heritability and Genetic Advance of Major Cultivars of Spray Chrysanthemum (주요 스프레이 국화 품종의 형태적 특성과 변이계수, 유전율 및 유전자 전이율)

  • Shim, Sung-Im;Lim, Ki-Byung;Kim, Chang-Kil;Chung, Mi-Young;Kim, Kyung-Min;Chung, Jae-Dong
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.269-281
    • /
    • 2016
  • The statistical analyses of coefficient of variation, heritability, and genetic advance were carried out to identify differences in morphological characteristics, such as the stem and inflorescence length, of 10 major commercial cultivars of spray chrysanthemum (Chrysanthemum morifolium). For morphological characteristics, stem lengths ranged from 46.4 cm to 54.9 cm, the maximum diameter of stem was 5.6 to 8.5 mm, the hardness of the stem was 0.17 to $0.70kg{\cdot}m^{-2}$, the fresh weight of stem was 7.5 to 17.5 g, the dry weight of the stem was 1.6 to 3.3 g, the ratio of dry weight/fresh weight of stem was 15.9% to 23.1%. Also, the number of leaves on the stem was 8.4 to 12.2, the stem leaf area was 17.8 to $37.8m^2$, the fresh weight stem leaves was 5.3 to 18.6 g, the dry weight was 0.5 to 1.4 g and the ratio of dry weight /fresh weight of stem leaves was 7.6% to 11.5%. The inflorescence length ranged from 10.1 to 18.6 cm, the fresh weight of inflorescence was 7.3 to 26.7 g, the dry weight of inflorescence was 1.2 to 2.8 g, the ratio of dry weight /fresh weight of inflorescence was 10.4% to 17.1%. For flower, the diameter of the flower center was 8.2 to 13.3 mm, the petal width was 5.7 to 14.0 mm, the petal length was 12.9 to 33.1 mm, and the petal thickness was 157.8 to $354.4{\mu}m$. The mean values of each character in each cultivar were very different, and DMRT and LSD values based on morphological characteristics among 10 cultivars were highly significant. For variability and genetic parameters, the lowest CV (coefficient of variation), PCV (phenotypic coefficient of variation), and GCV (genotypic coefficient of variation) were 4.79% to 5.15% in stem length, and the highest variations were 62.97% to 65.21% in leaf area. ECV (error or environmental coefficient of variation) was the lowest for leaf area (1.71%) and it was the highest for leaf dry weight (19.30%). Heritability also significantly differed among the characteristics, ranging from 68.69% to 99.67%, the lowest value was shown in ratio of dry weight /fresh weight of stem and the highest value was for leaf area of stem. The value for genetic advance was the lowest in hardness of stem at 0.30 and the highest in leaf thickness at 156.65. The lowest genetic advance as percentage of mean of stem hardness was 9.17%, while the highest percentage of stem length was 134.27%. Thus the characters which had the highest values indicated above show the influence of additive gene action and may provide useful resources for selection programs for agronomic improvement.