현재의 이동통신시장은 시장의 포화상태로 인해 신규 고객의 확보보다는 기존 고객의 유지에 마케팅 활동을 강화하고 있다. 본 연구에서는 이탈고객관리(churn management)를 위한 방안으로 데이터마이닝 기법에 기반하여 고객을 등급별로 세분화하였다. 이동통신 고객데이터를 활용하여 로짓모형, 인공신경망, SVM 등을 이탈고객 예측모형을 개발하였고, 각 모형별 성과를 통계적으로 비교하였다. 이탈고객 예측모형을 통해 고객의 이탈가능성을 등급화하여 등급별 이탈확률과 점유율, 적중률을 산출하였다. 제안된 고객등급화 방법을 통해 이동통신사들은 고객의 이탈확률에 따른 차별화된 마케팅 전락을 수행할 수 있을 것으로 기대된다.
오늘날의 고객은 다양한 정보를 통해 넓은 선택의 기회를 가진다. 이러한 상황에서 기업들은 고객과의 지속적인 관계를 유지하기 어려워짐에 따라 고객 유지와 신규 고객 유치를 위한 마케팅 비용을 천문학적으로 지출하고 있다. 기업들이 이탈하는 고객의 속성을 분석하고 이탈 시점을 예측할 수 있다면 마케팅에 사용되는 비용과 노력을 최소화할 수 있을 것으로 예측된다. 이를 위해 본 논문에서는 효과적인 고객 이탈 예측을 위한 딥러닝 기반의 이탈 예측 모델을 제안한다. 이 모델은 모바일 RPG 게임 고객의 시계열적인 행동 패턴을 이용하여 이탈을 예측하는 모델로, 예측을 위한 학습을 할 때 모델링된 고객 데이터를 분석하여 이탈 고객의 특성을 파악할 수 있게 한다. 실험을 통해 이탈 고객과 미 이탈 고객의 모델링된 값이 각각 특정 속성에 치중되어 있는 것을 확인하였고, 제안 모델이 합리적으로 고객의 이탈을 예측하는 것을 보였다.
고객관계관리(customer relationship management: 이하 CRM)는 고객에 대한 정보를 수집하고 수집된 정보를 효과적으로 활용하여 신규고객획득, 우수고객 유지, 고객가치 증진, 잠재고객 활성화, 평생 고객화의 순환을 통하여 고객을 적극적으로 관리하고 유지하며 고객의 가치를 극대화시키기 위한 기업 마케팅 전략의 일환이다. 특히 경쟁 환경이 급변하고 치열해 짐에 따라 기업의 수익 극대화를 위한 고객가치 증대 및 고객과의 관계 형성을 위한 CRM활동 중 고객의 이탈방지를 통한 유지관리의 중요성이 점차 커지고 있으며, 이러한 움직임은 고객 세분화를 통한 이탈고객 관리분석으로 주로 금융시장에서 다루어져왔다. 한편, 금융시장뿐만 아니라 모든 사업 분야에서 고객 유지 및 이탈방지를 위한 분석의 필요성은 높아지고 있다. 그 이유는 자사가 보유하고 있는 고객의 특성을 파악함으로써 기존의 고객을 효과적으로 유지·관리하여 고객이탈을 막는 것이 고객관리에서 점차 그 중요성을 더하기 때문이다. 그러나 아직까지 필요성만 대두될 뿐 어떠한 속성을 보유하고 있는 고객이 쉽게 이탈하는지를 판별할 수 있는 이탈고객에 대한 체계적인 연구가 진행되지 않았다는데 한계점이 있다. 이에 본 연구에서는 TV 홈쇼핑사의 실제 고객자료를 통하여 고객의 유지 및 이탈방지를 위한 CRM전개방안, 이탈고객과 유지고객간의 인구통계적 속성 및 거래 행동의 특성 차이를 분석, 이탈에 미치는 영향력이 높은 변수를 밝혀내고 이탈고객예측 모형을 통하여 개별고객의 이탈확률을 예측하고자 했다. 더 나아가 실증 분석 결과를 바탕으로 이탈예측고객을 대상으로 고객 이탈을 방지하고 거래유지 및 활성화를 위한 CRM전개 방안을 도출, 이를 바탕으로 TV 홈쇼핑사가 수립해야할 마케팅 전략을 제시한다.
이탈 고객 예측은 데이터 마이닝에서 다루는 주요한 문제 중에 하나이다. 이탈 고객 예측은 일종의 분류(classification) 문제로 의사결정나무추론, 로지스틱 회귀분석, 인공신경망 등의 기법이 많이 활용되어왔다. 일반적으로 이탈 고객 예측을 위한 모델은 고객의 인구통계학적 정보와 계약이나 거래 정보를 입력변수로 하여 이탈 여부를 목표변수로 보는 형태로 분류 모델을 생성하게 된다. 본 연구에서는 고객과의 지속적인 접촉으로 발생되는 추가적인 사건 정보를 활용하여 연관성 규칙을 생성하고 이 결과를 기존의 방식으로 생성된 분류 모델과 결합하는 이탈 고객 예측 방법을 제시한다. 제시한 방법의 유용성을 확인하기 위해서 특정 국내 신용카드사의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 제시된 방법이 기존의 전통적인 분류 모델에 비해서 향상된 성능을 보이는 것을 확인할 수 있었다. 제시된 예측 방법의 장점은 기존의 이탈 예측을 위한 입력 변수들 이외에 고객과 회사간의 접촉을 통해서 생성된 동적 정보들을 통합적으로 활용하여 예측 정확도를 높이고 실시간으로 이탈 확률을 갱신할 수 있다는 점이다.
최근 빠르게 성숙되고 있는 시장과 경쟁적 환경으로 인해 고객 유지에 대한 중요성이 증대되고 있다. 이는 기존 고객을 유지하는 것이 비용 면에서 저렴할 뿐 아니라, 고객 충성도나 구전효과가 같은 기타 부수적인 이득을 획득할 수 있다는 측면에서 유리하기 때문이다. 본 논문은 고객의 이탈 가능성을 미리 예측하고 이를 사전에 방지할 수 있는 고객 유지 절차를 제시하고 있다. 이탈고객의 탐지 및 방지를 위해서는 기존의 인구통계학적 자료 외에도 웹로그, 구매 Database 등의 대용량의 고객 행위 데이터에 대한 분석이 요구되기 때문에 데이터 마이닝 기법의 활용이 필수적이다. 그러나 대부분의 데이터 마이닝 연구는 예측 및 분류의 정확성이 높은 모델을 개발하는데 초점이 맞추어져 있으며, 고객의 행위를 이해하고 바람직한 방향으로 유도하고자 하는 연구는 지극히 부족한 상황이다. 그러므로 본 논문은 다양한 데이터마이닝 기법을 통합하여 잠재 이탈고객을 탐지하고, 기존 연구에서 간과하고 있던 비용적 측면을 고려한 이탈 방지 절차를 제시하고자 한다.
본 연구에서는 국내 한 이동통신회사의 해지 고객 중심의 통화 네트워크 데이터를 가지고 고객들 간의 관계 구조를 나타내는 소셜 네트워크 분석의 일종인 자아 네트워크(Ego-Network) 분석을 통해 핵심 연결자 역할 및 중개 역할을 하는 이탈고객이 다른 고객의 이탈에 어떻게 영향을 미쳤는지를 분석하고 이를 기반으로 고객 이탈 예측 및 이탈방지를 위한 방안을 제시하고자 한다. 해지고객들 간 양방향 통화를 갖는 네트워크를 살펴본 결과, 해지고객들 간의 무더기 이탈 현상을 확인할 수 있었다. 이러한 이탈 그룹에는 그룹 이탈에 영향을 주는 이탈유발자가 존재하고 있었으며, 이러한 이탈유발자의 특징은 그룹 내에서 많은 구성원들과 연결되어 있는 핵심 연결자 역할을 하면서, 정보전달의 매개자 역할을 동시에 해내는 고객이었다. 즉 긴밀한 네트워크일수록, 이탈유발자 비중이 높고, 이들 이탈유발자와의 관계에 의한 이탈현상은 이탈유발자의 영향이 큰 것으로 볼 수 있을 것이다.
최근 데이터 마이닝 기법이 주목받고 있는 이유 중의 가장 큰 이유는 자사가 보유하고 있는 고객의 특성을 파악함으로써 기존의 고객을 효과적으로 유지·관리할 수 있도록 지원하기 때문이다. 특히 고객 보유율 5% 신장이 수익률 120% 증대를 가져오는 것으로 보고되고 있는 신용카드 업계에서는 신규고객을 확보하는 것 만큼 기존 고객을 유지·관리하는 것이 중요하다. 특히, 신용카드를 발급 받고 거의 사용하지 않은 고객이나 쉽게 이탈하는 고객을 판별하는 것은 신용카드사의 입장에서는 비용절감 차원에서 매우 중요하다. 그러나 아직까지 어떠한 속성을 보유하고 있는 고객이 쉽게 이탈하는지를 판별할 수 있는 연구는 거의 진행되지 않았다. 이에 본 인구에서는 데이터마이닝 기법 중 널리 알려진 인공신경망, 로지스틱 회귀분석, C5.0 방법을 이용하여 신용카드 시장에서의 고객현황에 대하여 분석하고자 한다. 이를 위하여 본 연구에서는 모 신용카드사의 최근 4년간 (97넌 3월 이후) 가입고객 및 이탈고객을 대상으로 실증분석을 실시하였다. 분석결과 신용카드 시장에서 카드를 지속적으로 보유하고 있는 고객과 이탈하는 고객을 구분하는 속성이 존재함을 발견하였고, 이를 바탕으로 신용카드사가 수립해야 할 마케팅 전략을 제시하였다.
기업들이 장기간에 걸쳐 고객관계를 구축하고 관리하여야 할 필요성이 증가함에 따라 고객이탈은 고객생애가치 관점에서 중요성이 점증하고 있다. 이에 대하여 Keaveney(1995)는 서비스 상황에서 고객이탈 및 전환행동에 서비스실패가 가장 주요한 요소임을 제시하고 있다. 본 연구는 Keaveney(1995) 연구를 확장하여 기존 고객들은 서비스실패 상황에서 고객-기업 관계특성의 차이에 따라 서비스실패에 대한 평가 또는 만족에 차이를 보이게 되며 이에 따라 고객이탈이 달라지게 됨을 가구단위의 연속적 서비스 상황을 중심으로 검토하였다. 본 연구에서는 기존의 마케팅 문헌에 대한 고찰을 통하여 고객-기업 관계특성으로서 관계기간, 이용수준, 의사결정영향력, 산업지식 및 전환비용을 조정변수로 도출하였으며, 국내 초고석인터넷서비스 이용고객을 대상으로 실증분석을 수행하였다. 서비스실패를 결과실패와 과정실패로 고찰하여 분석한 결과 이들의 조정변수로서의 역할이 검증되었다. 본 연구는 이론적으로 서비스실패와 고객이탈과의 관계에서 다양한 고객-기업 관계특성이 조정변수로 작용하고 있음을 검토하였으며, 실무적으로 기존고객의 고객-기업 관계특성에 대한 고객정보 구축 및 이의 효율적 실행을 통하여 고객이탈을 방지할 수 있음을 제시하였다.
이 논문에서는 지식발견과 데이터 마이닝에 관한 전반적인 소개와 고객이탈에 관한 것이다. 데이터 마이닝이란 과거에 수집된 데이터로부터 반복적인 학습과정을 거쳐 데이터에 내재되어 있는 패턴을 찾아내는 모델링 기법이며 통신서비스시장에서 데이터 마이닝 활용으로 고객이탈방지 모델을 인공신경망을 통해 구축하였다. 통신서비스시장의 경쟁이 심화됨에 따라 통신서비스 제공 업체가 고통으로 겪는 어려움 중의 하나가 고객이탈률이다. 따라서 데이터베이스에서 보다 가치 있는 정보를 찾아내 고객 이탈고객 분류의 적중률에 관하여 논의하였다.
금융산업에서 고객의 이탈비율은 기대수익에 영향을 미친다는 점에서 예측이 필요한 부분이며 최근 들어 정확한 예측을 통한 비용관리가 이루어지면서 고객 이탈을 예측하는 것이 중요한 문제로 떠오르고 있다. 그러나 보험 고객 데이터가 대용량이고 불균형한 출력 값을 갖는 특성으로 인해 기존의 방법으로 예측 모델을 만드는 것이 적합하지 않다. 본 연구에서는 대용량 데이터를 처리하는 데 효과적으로 알려져 있는 Trust-region Newton method를 적용한 로지스틱 회귀분석을 통해 이탈고객을 예측하는 것을 주된 연구로 하며, 불균형한 데이터에서의 예측정확도를 높이기 위해 Oversampling, Clustering, Boosting 등을 이용하여 고객 데이터에 적합한 이탈 고객 예측 모형을 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.