• 제목/요약/키워드: 고객 이탈

검색결과 142건 처리시간 0.031초

데이터마이닝을 이용한 이탈확률에 기반한 고객 세분화

  • 홍태호;전성용
    • 한국정보시스템학회:학술대회논문집
    • /
    • 한국정보시스템학회 2005년도 추계학술대회 발표 논문집
    • /
    • pp.119-129
    • /
    • 2005
  • 현재의 이동통신시장은 시장의 포화상태로 인해 신규 고객의 확보보다는 기존 고객의 유지에 마케팅 활동을 강화하고 있다. 본 연구에서는 이탈고객관리(churn management)를 위한 방안으로 데이터마이닝 기법에 기반하여 고객을 등급별로 세분화하였다. 이동통신 고객데이터를 활용하여 로짓모형, 인공신경망, SVM 등을 이탈고객 예측모형을 개발하였고, 각 모형별 성과를 통계적으로 비교하였다. 이탈고객 예측모형을 통해 고객의 이탈가능성을 등급화하여 등급별 이탈확률과 점유율, 적중률을 산출하였다. 제안된 고객등급화 방법을 통해 이동통신사들은 고객의 이탈확률에 따른 차별화된 마케팅 전락을 수행할 수 있을 것으로 기대된다.

  • PDF

RNN을 이용한 고객 이탈 예측 및 분석 (Customer Churn Prediction Using RNN)

  • 이세희;이지형
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제54차 하계학술대회논문집 24권2호
    • /
    • pp.45-48
    • /
    • 2016
  • 오늘날의 고객은 다양한 정보를 통해 넓은 선택의 기회를 가진다. 이러한 상황에서 기업들은 고객과의 지속적인 관계를 유지하기 어려워짐에 따라 고객 유지와 신규 고객 유치를 위한 마케팅 비용을 천문학적으로 지출하고 있다. 기업들이 이탈하는 고객의 속성을 분석하고 이탈 시점을 예측할 수 있다면 마케팅에 사용되는 비용과 노력을 최소화할 수 있을 것으로 예측된다. 이를 위해 본 논문에서는 효과적인 고객 이탈 예측을 위한 딥러닝 기반의 이탈 예측 모델을 제안한다. 이 모델은 모바일 RPG 게임 고객의 시계열적인 행동 패턴을 이용하여 이탈을 예측하는 모델로, 예측을 위한 학습을 할 때 모델링된 고객 데이터를 분석하여 이탈 고객의 특성을 파악할 수 있게 한다. 실험을 통해 이탈 고객과 미 이탈 고객의 모델링된 값이 각각 특정 속성에 치중되어 있는 것을 확인하였고, 제안 모델이 합리적으로 고객의 이탈을 예측하는 것을 보였다.

  • PDF

CRM 고객데이터 분석을 통한 이탈고객 연구 (A Study of Customer Churn by Analysing CRM Customer Data)

  • 김상용;송지연;이기순
    • Asia Marketing Journal
    • /
    • 제7권1호
    • /
    • pp.21-42
    • /
    • 2005
  • 고객관계관리(customer relationship management: 이하 CRM)는 고객에 대한 정보를 수집하고 수집된 정보를 효과적으로 활용하여 신규고객획득, 우수고객 유지, 고객가치 증진, 잠재고객 활성화, 평생 고객화의 순환을 통하여 고객을 적극적으로 관리하고 유지하며 고객의 가치를 극대화시키기 위한 기업 마케팅 전략의 일환이다. 특히 경쟁 환경이 급변하고 치열해 짐에 따라 기업의 수익 극대화를 위한 고객가치 증대 및 고객과의 관계 형성을 위한 CRM활동 중 고객의 이탈방지를 통한 유지관리의 중요성이 점차 커지고 있으며, 이러한 움직임은 고객 세분화를 통한 이탈고객 관리분석으로 주로 금융시장에서 다루어져왔다. 한편, 금융시장뿐만 아니라 모든 사업 분야에서 고객 유지 및 이탈방지를 위한 분석의 필요성은 높아지고 있다. 그 이유는 자사가 보유하고 있는 고객의 특성을 파악함으로써 기존의 고객을 효과적으로 유지·관리하여 고객이탈을 막는 것이 고객관리에서 점차 그 중요성을 더하기 때문이다. 그러나 아직까지 필요성만 대두될 뿐 어떠한 속성을 보유하고 있는 고객이 쉽게 이탈하는지를 판별할 수 있는 이탈고객에 대한 체계적인 연구가 진행되지 않았다는데 한계점이 있다. 이에 본 연구에서는 TV 홈쇼핑사의 실제 고객자료를 통하여 고객의 유지 및 이탈방지를 위한 CRM전개방안, 이탈고객과 유지고객간의 인구통계적 속성 및 거래 행동의 특성 차이를 분석, 이탈에 미치는 영향력이 높은 변수를 밝혀내고 이탈고객예측 모형을 통하여 개별고객의 이탈확률을 예측하고자 했다. 더 나아가 실증 분석 결과를 바탕으로 이탈예측고객을 대상으로 고객 이탈을 방지하고 거래유지 및 활성화를 위한 CRM전개 방안을 도출, 이를 바탕으로 TV 홈쇼핑사가 수립해야할 마케팅 전략을 제시한다.

  • PDF

실시간 CRM을 위한 분류 기법과 연관성 규칙의 통합적 활용;신용카드 고객 이탈 예측에 활용

  • 이지영;김종우
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2007년도 International Conference
    • /
    • pp.135-140
    • /
    • 2007
  • 이탈 고객 예측은 데이터 마이닝에서 다루는 주요한 문제 중에 하나이다. 이탈 고객 예측은 일종의 분류(classification) 문제로 의사결정나무추론, 로지스틱 회귀분석, 인공신경망 등의 기법이 많이 활용되어왔다. 일반적으로 이탈 고객 예측을 위한 모델은 고객의 인구통계학적 정보와 계약이나 거래 정보를 입력변수로 하여 이탈 여부를 목표변수로 보는 형태로 분류 모델을 생성하게 된다. 본 연구에서는 고객과의 지속적인 접촉으로 발생되는 추가적인 사건 정보를 활용하여 연관성 규칙을 생성하고 이 결과를 기존의 방식으로 생성된 분류 모델과 결합하는 이탈 고객 예측 방법을 제시한다. 제시한 방법의 유용성을 확인하기 위해서 특정 국내 신용카드사의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 제시된 방법이 기존의 전통적인 분류 모델에 비해서 향상된 성능을 보이는 것을 확인할 수 있었다. 제시된 예측 방법의 장점은 기존의 이탈 예측을 위한 입력 변수들 이외에 고객과 회사간의 접촉을 통해서 생성된 동적 정보들을 통합적으로 활용하여 예측 정확도를 높이고 실시간으로 이탈 확률을 갱신할 수 있다는 점이다.

  • PDF

SOM을 이용한 고객의 이탈 가능성 분석 및 이탈 방지 방법론

  • 채경희;김재경;송희석
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2004년도 춘계공동학술대회 논문집
    • /
    • pp.694-697
    • /
    • 2004
  • 최근 빠르게 성숙되고 있는 시장과 경쟁적 환경으로 인해 고객 유지에 대한 중요성이 증대되고 있다. 이는 기존 고객을 유지하는 것이 비용 면에서 저렴할 뿐 아니라, 고객 충성도나 구전효과가 같은 기타 부수적인 이득을 획득할 수 있다는 측면에서 유리하기 때문이다. 본 논문은 고객의 이탈 가능성을 미리 예측하고 이를 사전에 방지할 수 있는 고객 유지 절차를 제시하고 있다. 이탈고객의 탐지 및 방지를 위해서는 기존의 인구통계학적 자료 외에도 웹로그, 구매 Database 등의 대용량의 고객 행위 데이터에 대한 분석이 요구되기 때문에 데이터 마이닝 기법의 활용이 필수적이다. 그러나 대부분의 데이터 마이닝 연구는 예측 및 분류의 정확성이 높은 모델을 개발하는데 초점이 맞추어져 있으며, 고객의 행위를 이해하고 바람직한 방향으로 유도하고자 하는 연구는 지극히 부족한 상황이다. 그러므로 본 논문은 다양한 데이터마이닝 기법을 통합하여 잠재 이탈고객을 탐지하고, 기존 연구에서 간과하고 있던 비용적 측면을 고려한 이탈 방지 절차를 제시하고자 한다.

  • PDF

소셜 네트워크 분석을 기반으로 한 이동통신 잠재고객 이탈에 대한 연구 (Analysis to Customer Churn Provoker's Roles Using Call Network of a Telecom Company)

  • 전희주;임병학
    • 응용통계연구
    • /
    • 제26권1호
    • /
    • pp.23-36
    • /
    • 2013
  • 본 연구에서는 국내 한 이동통신회사의 해지 고객 중심의 통화 네트워크 데이터를 가지고 고객들 간의 관계 구조를 나타내는 소셜 네트워크 분석의 일종인 자아 네트워크(Ego-Network) 분석을 통해 핵심 연결자 역할 및 중개 역할을 하는 이탈고객이 다른 고객의 이탈에 어떻게 영향을 미쳤는지를 분석하고 이를 기반으로 고객 이탈 예측 및 이탈방지를 위한 방안을 제시하고자 한다. 해지고객들 간 양방향 통화를 갖는 네트워크를 살펴본 결과, 해지고객들 간의 무더기 이탈 현상을 확인할 수 있었다. 이러한 이탈 그룹에는 그룹 이탈에 영향을 주는 이탈유발자가 존재하고 있었으며, 이러한 이탈유발자의 특징은 그룹 내에서 많은 구성원들과 연결되어 있는 핵심 연결자 역할을 하면서, 정보전달의 매개자 역할을 동시에 해내는 고객이었다. 즉 긴밀한 네트워크일수록, 이탈유발자 비중이 높고, 이들 이탈유발자와의 관계에 의한 이탈현상은 이탈유발자의 영향이 큰 것으로 볼 수 있을 것이다.

신용카드 시장에서 데이터마이닝을 이용한 이탈고객 분석 (Customer Churning Analysis by Using Data Mining in Credit Card Market)

  • 이건창;정남호;신경식
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 춘계정기학술대회
    • /
    • pp.421-444
    • /
    • 2001
  • 최근 데이터 마이닝 기법이 주목받고 있는 이유 중의 가장 큰 이유는 자사가 보유하고 있는 고객의 특성을 파악함으로써 기존의 고객을 효과적으로 유지·관리할 수 있도록 지원하기 때문이다. 특히 고객 보유율 5% 신장이 수익률 120% 증대를 가져오는 것으로 보고되고 있는 신용카드 업계에서는 신규고객을 확보하는 것 만큼 기존 고객을 유지·관리하는 것이 중요하다. 특히, 신용카드를 발급 받고 거의 사용하지 않은 고객이나 쉽게 이탈하는 고객을 판별하는 것은 신용카드사의 입장에서는 비용절감 차원에서 매우 중요하다. 그러나 아직까지 어떠한 속성을 보유하고 있는 고객이 쉽게 이탈하는지를 판별할 수 있는 연구는 거의 진행되지 않았다. 이에 본 인구에서는 데이터마이닝 기법 중 널리 알려진 인공신경망, 로지스틱 회귀분석, C5.0 방법을 이용하여 신용카드 시장에서의 고객현황에 대하여 분석하고자 한다. 이를 위하여 본 연구에서는 모 신용카드사의 최근 4년간 (97넌 3월 이후) 가입고객 및 이탈고객을 대상으로 실증분석을 실시하였다. 분석결과 신용카드 시장에서 카드를 지속적으로 보유하고 있는 고객과 이탈하는 고객을 구분하는 속성이 존재함을 발견하였고, 이를 바탕으로 신용카드사가 수립해야 할 마케팅 전략을 제시하였다.

  • PDF

서비스실패와 고객이탈간 연결에서 고객-기업 관계특성의 조정적 역할 - 가구단위의 연속적 서비스를 중심으로 - (Moderating Role of Customer-Firm Relationship Characteristics In Service Failures and Customer Defection Link)

  • 주영혁;박옥선
    • 마케팅과학연구
    • /
    • 제16권2호
    • /
    • pp.27-54
    • /
    • 2006
  • 기업들이 장기간에 걸쳐 고객관계를 구축하고 관리하여야 할 필요성이 증가함에 따라 고객이탈은 고객생애가치 관점에서 중요성이 점증하고 있다. 이에 대하여 Keaveney(1995)는 서비스 상황에서 고객이탈 및 전환행동에 서비스실패가 가장 주요한 요소임을 제시하고 있다. 본 연구는 Keaveney(1995) 연구를 확장하여 기존 고객들은 서비스실패 상황에서 고객-기업 관계특성의 차이에 따라 서비스실패에 대한 평가 또는 만족에 차이를 보이게 되며 이에 따라 고객이탈이 달라지게 됨을 가구단위의 연속적 서비스 상황을 중심으로 검토하였다. 본 연구에서는 기존의 마케팅 문헌에 대한 고찰을 통하여 고객-기업 관계특성으로서 관계기간, 이용수준, 의사결정영향력, 산업지식 및 전환비용을 조정변수로 도출하였으며, 국내 초고석인터넷서비스 이용고객을 대상으로 실증분석을 수행하였다. 서비스실패를 결과실패와 과정실패로 고찰하여 분석한 결과 이들의 조정변수로서의 역할이 검증되었다. 본 연구는 이론적으로 서비스실패와 고객이탈과의 관계에서 다양한 고객-기업 관계특성이 조정변수로 작용하고 있음을 검토하였으며, 실무적으로 기존고객의 고객-기업 관계특성에 대한 고객정보 구축 및 이의 효율적 실행을 통하여 고객이탈을 방지할 수 있음을 제시하였다.

  • PDF

통신시장에서 마이터 마이닝 분석 (The Analysis Telecommunication Service MarKet with Data Mining)

  • 장일동;위승민
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (1)
    • /
    • pp.1-3
    • /
    • 2001
  • 이 논문에서는 지식발견과 데이터 마이닝에 관한 전반적인 소개와 고객이탈에 관한 것이다. 데이터 마이닝이란 과거에 수집된 데이터로부터 반복적인 학습과정을 거쳐 데이터에 내재되어 있는 패턴을 찾아내는 모델링 기법이며 통신서비스시장에서 데이터 마이닝 활용으로 고객이탈방지 모델을 인공신경망을 통해 구축하였다. 통신서비스시장의 경쟁이 심화됨에 따라 통신서비스 제공 업체가 고통으로 겪는 어려움 중의 하나가 고객이탈률이다. 따라서 데이터베이스에서 보다 가치 있는 정보를 찾아내 고객 이탈고객 분류의 적중률에 관하여 논의하였다.

  • PDF

Logistic Regression을 이용한 이탈고객예측모형 (Churn Prediction Model using Logistic Regression)

  • 정한나;박혜진;김남형;전치혁;이재욱
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2008년도 추계학술대회 및 정기총회
    • /
    • pp.324-328
    • /
    • 2008
  • 금융산업에서 고객의 이탈비율은 기대수익에 영향을 미친다는 점에서 예측이 필요한 부분이며 최근 들어 정확한 예측을 통한 비용관리가 이루어지면서 고객 이탈을 예측하는 것이 중요한 문제로 떠오르고 있다. 그러나 보험 고객 데이터가 대용량이고 불균형한 출력 값을 갖는 특성으로 인해 기존의 방법으로 예측 모델을 만드는 것이 적합하지 않다. 본 연구에서는 대용량 데이터를 처리하는 데 효과적으로 알려져 있는 Trust-region Newton method를 적용한 로지스틱 회귀분석을 통해 이탈고객을 예측하는 것을 주된 연구로 하며, 불균형한 데이터에서의 예측정확도를 높이기 위해 Oversampling, Clustering, Boosting 등을 이용하여 고객 데이터에 적합한 이탈 고객 예측 모형을 제시하고자 한다.

  • PDF