• Title/Summary/Keyword: 고객 빅데이터

Search Result 192, Processing Time 0.032 seconds

AI Platform Solution Service and Trends (글로벌 AI 플랫폼 솔루션 서비스와 발전 방향)

  • Lee, Kang-Yoon;Kim, Hye-rim;Kim, Jin-soo
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.9-16
    • /
    • 2017
  • Global Platform Solution Company (aka Amazon, Google, MS, IBM) who has cloud platform, are driving AI and Big Data service on their cloud platform. It will dramatically change Enterprise business value chain and infrastructures in Supply Chain Management, Enterprise Resource Planning in Customer relationship Management. Enterprise are focusing the channel with customers and Business Partners and also changing their infrastructures to platform by integrating data. It will be Digital Transformation for decision support. AI and Deep learning technology are rapidly combined to their data driven platform, which supports mobile, social and big data. The collaboration of platform service with business partner and the customer will generate new ecosystem market and it will be the new way of enterprise revolution as a part of the 4th industrial revolution.

  • PDF

Real-time CRM Strategy of Big Data and Smart Offering System: KB Kookmin Card Case (KB국민카드의 빅데이터를 활용한 실시간 CRM 전략: 스마트 오퍼링 시스템)

  • Choi, Jaewon;Sohn, Bongjin;Lim, Hyuna
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.1-23
    • /
    • 2019
  • Big data refers to data that is difficult to store, manage, and analyze by existing software. As the lifestyle changes of consumers increase the size and types of needs that consumers desire, they are investing a lot of time and money to understand the needs of consumers. Companies in various industries utilize Big Data to improve their products and services to meet their needs, analyze unstructured data, and respond to real-time responses to products and services. The financial industry operates a decision support system that uses financial data to develop financial products and manage customer risks. The use of big data by financial institutions can effectively create added value of the value chain, and it is possible to develop a more advanced customer relationship management strategy. Financial institutions can utilize the purchase data and unstructured data generated by the credit card, and it becomes possible to confirm and satisfy the customer's desire. CRM has a granular process that can be measured in real time as it grows with information knowledge systems. With the development of information service and CRM, the platform has change and it has become possible to meet consumer needs in various environments. Recently, as the needs of consumers have diversified, more companies are providing systematic marketing services using data mining and advanced CRM (Customer Relationship Management) techniques. KB Kookmin Card, which started as a credit card business in 1980, introduced early stabilization of processes and computer systems, and actively participated in introducing new technologies and systems. In 2011, the bank and credit card companies separated, leading the 'Hye-dam Card' and 'One Card' markets, which were deviated from the existing concept. In 2017, the total use of domestic credit cards and check cards grew by 5.6% year-on-year to 886 trillion won. In 2018, we received a long-term rating of AA + as a result of our credit card evaluation. We confirmed that our credit rating was at the top of the list through effective marketing strategies and services. At present, Kookmin Card emphasizes strategies to meet the individual needs of customers and to maximize the lifetime value of consumers by utilizing payment data of customers. KB Kookmin Card combines internal and external big data and conducts marketing in real time or builds a system for monitoring. KB Kookmin Card has built a marketing system that detects realtime behavior using big data such as visiting the homepage and purchasing history by using the customer card information. It is designed to enable customers to capture action events in real time and execute marketing by utilizing the stores, locations, amounts, usage pattern, etc. of the card transactions. We have created more than 280 different scenarios based on the customer's life cycle and are conducting marketing plans to accommodate various customer groups in real time. We operate a smart offering system, which is a highly efficient marketing management system that detects customers' card usage, customer behavior, and location information in real time, and provides further refinement services by combining with various apps. This study aims to identify the traditional CRM to the current CRM strategy through the process of changing the CRM strategy. Finally, I will confirm the current CRM strategy through KB Kookmin card's big data utilization strategy and marketing activities and propose a marketing plan for KB Kookmin card's future CRM strategy. KB Kookmin Card should invest in securing ICT technology and human resources, which are becoming more sophisticated for the success and continuous growth of smart offering system. It is necessary to establish a strategy for securing profit from a long-term perspective and systematically proceed. Especially, in the current situation where privacy violation and personal information leakage issues are being addressed, efforts should be made to induce customers' recognition of marketing using customer information and to form corporate image emphasizing security.

A Study on Bigdata Utilization in Cultural and Artistic Contents Production and Distribution (문화예술 콘텐츠 제작 및 유통에서의 빅데이터 활용 연구)

  • Kim, Hyun-Young;Kim, Jae-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.7
    • /
    • pp.384-392
    • /
    • 2019
  • Big data-related research that deals with the amount of explosive information in the era of the Fourth Industrial Revolution is actively underway. Big data is an essential element that promotes the development of artificial intelligence with a wide range of data that become learning data for machine learning, or deep learning. The use of deep learning and big data in various fields has produced meaningful results. In this paper, we have investigated the use of Big Data in the cultural arts industry, focusing on video contents. Noteworthy is that big data is used not only in the distribution of cultural and artistic contents but also in the production stage. In particular, we first looked at what kind of achievements and changes the Netflix in the US brought to the OTT business, and analyzed the current state of the OTT business in Korea. After that, Netflix analyzed the success stories of 'House of Cards', which was produced / circulated through 'Deep Learning' cinematique, which is a prediction algorithm, through accumulated customer data. After that, FGI (Focus Group Interview) was held for cultural and artistic contents experts. In this way, the future prospects of Big Data in the domestic culture and arts industry are divided into technical aspect, creative aspect, and ethical aspect.

Explainable Credit Default Prediction Using SHAP (SHAP을 이용한 설명 가능한 신용카드 연체 예측)

  • Minjoong Kim;Seungwoo Kim;Jihoon Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.39-40
    • /
    • 2024
  • 본 연구는 SHAP(SHapley Additive exPlanations)을 활용하여 신용카드 사용자의 연체 가능성을 예측하는 기계학습 모델의 해석 가능성을 강화하는 방법을 제안한다. 대규모 신용카드 데이터를 분석하여, 고객의 나이, 성별, 결혼 상태, 결제 이력 등이 연체 발생에 미치는 영향을 명확히 하는 것을 목표로 한다. 본 연구를 토대로 금융기관은 더 정확한 위험 관리를 수행하고, 고객에게 맞춤형 서비스를 제공할 수 있는 기반을 마련할 수 있다.

  • PDF

A Study on the Reputation of Tourism Services using Social Big Data (소셜 빅 데이터를 이용한 관광서비스 평판에 관한 연구)

  • Song, Eun-Jee;Kang, Min-Shik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.671-672
    • /
    • 2014
  • 최근 기업의 효율적인 경영을 위해 다양한 소셜 채널에서 폭발적으로 생성되고 확산되는 빅 데이터를 실시간으로 분석하는 기술이 개발되고 있다. 본 논문에서는 관광서비스에 관해 소셜 미디어 상의 빅 데이터를 이용하여 보다 정확하고 효율적인 정보 수집과 분석이 가능하도록 하기위한 모델구축 방법을 제안하고 관광서비스에 관한 평판을 분석한다. 관광 산업 도메인 네트워크를 활용한 표준화, 일반화 확보를 위해 먼저 B2C 산업군 및 업종별 공통 수집원 추출 및 표준화 분석 체계 수립을 통한 해당 적용분야의 설계안 수립하고 관광객(소비자) 작성 게시글 분석을 위한 산업군 정보 추출하며 관광지, 숙박지, 교통 등 다양한 업종에 대한 분석 수행한다. 관광지에 대한 평가 기준을 기존의 설문이 아닌 SNS 상의 고객 의견을 바탕으로 호감도로 분석한다.

  • PDF

RMSE Comparison of SVD Algorithms for Tax Accountant Recommendation Service (세무사 추천 서비스를 위한 SVD 알고리즘의 RMSE 비교)

  • Won-Jib Kim;Ji-Hye Huh;Se-Bean Park;Su-Min Lee;Eu-Na Kwon
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.963-964
    • /
    • 2023
  • 추천 시스템은 사용자의 선호도를 정확히 파악하는 것이 중요하다. 이를 위해 사용자 데이터를 분석하여 추천을 제공하는 협업 필터링 알고리즘을 활용한다. 하지만 상품의 종류와 고객 수가 많아짐에 따라 사용자 선호도 정확도가 떨어지는 문제점이 있다. 이 문제를 해결하기 위해 제안된 방법은 모델 기반 협업 필터링이며, 이는 고객과 사용자의 정보를 직접적으로 추천하는 대신 모델을 학습시키는데 활용된다. 이에 논문은 추천시스템에서 자주 사용되는 모델 협업 필터링 기반 SVD 모델을 학습 전에 하이퍼파라미터를 조절하여 모델에 추정 정확도 값인 RMSE를 측정한다.

Implementation of a pet product recommendation system using big data (빅 데이터를 활용한 애완동물 상품 추천 시스템 구현)

  • Kim, Sam-Taek
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.19-24
    • /
    • 2020
  • Recently, due to the rapid increase of pets, there is a need for an integrated pet-related personalized product recommendation service such as feed recommendation using a health status check of pets and various collected data. This paper implements a product recommendation system that can perform various personalized services such as collection, pre-processing, analysis, and management of pet-related data using big data. First, the sensor information worn by pets, customer purchase patterns, and SNS information are collected and stored in a database, and a platform capable of customized personalized recommendation services such as feed production and pet health management is implemented using statistical analysis. The platform can provide information to customers by outputting similarity product information about the product to be analyzed and information, and finally outputting the result of recommendation analysis.

A Study on the Customized Food Menu Recommendation System Based on ICT and Big Data (ICT 및 빅데이터기반 맞춤형 음식메뉴 추천시스템 연구)

  • Ryoo, Hee-Soo;Lee, Man-ting
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.339-346
    • /
    • 2021
  • In this paper, we implemented an interface that provides a better food ordering mechanism and enables real-time selection of recipe ingredient ratios for customized food orders from global customers. Providing appropriate food to global customers by arranging a selection of menu on the order system screen that shows the basic ratio of each recipe ingredient and provides a customized recipe ingredient composition ratio by configuring a recipe graph without a system for simply selecting and ordering food menus. By enabling interaction, it allows users to provide customized services through the ratio adjustment of various recipe ingredients in the food menu ordering device

Financial Products Recommendation System Using Customer Behavior Information (고객의 투자상품 선호도를 활용한 금융상품 추천시스템 개발)

  • Hyojoong Kim;SeongBeom Kim;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.111-128
    • /
    • 2023
  • With the development of artificial intelligence technology, interest in data-based product preference estimation and personalized recommender systems is increasing. However, if the recommendation is not suitable, there is a risk that it may reduce the purchase intention of the customer and even extend to a huge financial loss due to the characteristics of the financial product. Therefore, developing a recommender system that comprehensively reflects customer characteristics and product preferences is very important for business performance creation and response to compliance issues. In the case of financial products, product preference is clearly divided according to individual investment propensity and risk aversion, so it is necessary to provide customized recommendation service by utilizing accumulated customer data. In addition to using these customer behavioral characteristics and transaction history data, we intend to solve the cold-start problem of the recommender system, including customer demographic information, asset information, and stock holding information. Therefore, this study found that the model proposed deep learning-based collaborative filtering by deriving customer latent preferences through characteristic information such as customer investment propensity, transaction history, and financial product information based on customer transaction log records was the best. Based on the customer's financial investment mechanism, this study is meaningful in developing a service that recommends a high-priority group by establishing a recommendation model that derives expected preferences for untraded financial products through financial product transaction data.

Beauty Product Recommendation System using Customer Attributes Information (고객의 특성 정보를 활용한 화장품 추천시스템 개발)

  • Hyojoong Kim;Woosik Shin;Donghoon Shin;Hee-Woong Kim;Hwakyung Kim
    • Information Systems Review
    • /
    • v.23 no.4
    • /
    • pp.69-86
    • /
    • 2021
  • As artificial intelligence technology advances, personalized recommendation systems using big data have attracted huge attention. In the case of beauty products, product preferences are clearly divided depending on customers' skin types and sensitivity along with individual tastes, so it is necessary to provide customized recommendation services based on accumulated customer data. Therefore, by employing deep learning methods, this study proposes a neural network-based recommendation model utilizing both product search history and context information such as gender, skin types and skin worries of customers. The results show that our model with context information outperforms collaborative filtering-based recommender system models using customer search history.