• 제목/요약/키워드: 고객정보시스템

검색결과 1,855건 처리시간 0.023초

집중형센터를 가진 역물류네트워크 평가 : 혼합형 유전알고리즘 접근법 (Evaluating Reverse Logistics Networks with Centralized Centers : Hybrid Genetic Algorithm Approach)

  • 윤영수
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.55-79
    • /
    • 2013
  • 본 연구에서는 집중형 센터를 가진 역물류네트워크(Reverse logistics network with centralized centers : RLNCC)를 효율적을 해결하기 위한 혼합형 유전알고리즘(Hybrid genetic algorithm : HGA) 접근법을 제안한다. 제안된 HGA에서는 유전알고리즘(Genetic algorithm : GA)이 주요한 알고리즘으로 사용되며, GA 실행을 위해 0 혹은 1의 값을 가질 수 있는 새로운 비트스트링 표현구조(Bit-string representation scheme), Gen and Chang(1997)이 제안한 확장샘플링공간에서의 우수해 선택전략(Elitist strategy in enlarged sampling space) 2점 교차변이 연산자(Two-point crossover operator), 랜덤 돌연변이 연산자(Random mutation operator)가 사용된다. 또한 HGA에서는 혼합형 개념 적용을 위해 Michalewicz(1994)가 제안한 반복적언덕오르기법(Iterative hill climbing method : IHCM)이 사용된다. IHCM은 지역적 탐색기법(Local search technique) 중의 하나로서 GA탐색과정에 의해 수렴된 탐색공간에 대해 정밀하게 탐색을 실시한다. RLNCC는 역물류 네트워크에서 수집센터(Collection center), 재제조센터(Remanufacturing center), 재분배센터(Redistribution center), 2차 시장(Secondary market)으로 구성되며, 이들 각 센터 및 2차 시장들 중에서 하나의 센터 및 2차 시장만 개설되는 형태를 가지고 있다. 이러한 형태의 RLNCC는 혼합정수계획법(Mixed integer programming : MIP)모델로 표현되며, MIP 모델은 수송비용, 고정비용, 제품처리비용의 총합을 최소화하는 목적함수를 가지고 있다. 수송비용은 각 센터와 2차 시장 간에 제품수송에서 발생하는 비용을 의미하며, 고정비용은 각 센터 및 2차 시장의 개설여부에 따라 결정된다. 예를 들어 만일 세 개의 수집센터(수집센터 1, 2, 3의 개설비용이 각각 10.5, 12.1, 8.9)가 고려되고, 이 중에서 수집센터 1이 개설되고, 나머지 수집센터 2, 3은 개설되지 않을 경우, 전체고정비용은 10.5가 된다. 제품처리비용은 고객으로부터 회수된 제품을 각 센터 및 2차 시장에서 처리할 경우에 발생되는 비용을 의미한다. 수치실험에서는 본 연구에서 제안된 HGA접근법과 Yun(2013)의 연구에서 제안한 GA접근법이 다양한 수행도 평가 척도에 의해 서로 비교, 분석된다. Yun(2013)이 제안한 GA는 HGA에서 사용되는 IHCM과 같은 지역적탐색기법을 가지지 않는 접근법이다. 이들 두 접근법에서 동일한 조건의 실험을 위해 총세대수 : 10,000, 집단의 크기 : 20, 교차변이 확률 : 0.5, 돌연변이 확률 : 0.1, IHCM을 위한 탐색범위 : 2.0이 사용되며, 탐색의 랜덤성을 제거하기 위해 총 20번의 반복실행이 이루어 졌다. 사례로 제시된 두 가지 형태의 RLNCC에 대해 GA와 HGA가 각각 실행되었으며, 그 실험결과는 본 연구에서 제안된 HGA가 기존의 접근법인 GA보다 더 우수하다는 것이 증명되었다. 다만 본 연구에서는 비교적 규모가 작은 RLNCC만을 고려하였기에 추후 연구에서는 보다 규모가 큰 RLNCC에 대해 비교분석이 이루어 져야 할 것이다.

지식 공유의 파레토 비율 및 불평등 정도와 가상 지식 협업: 위키피디아 행위 데이터 분석 (Pareto Ratio and Inequality Level of Knowledge Sharing in Virtual Knowledge Collaboration: Analysis of Behaviors on Wikipedia)

  • 박현정;신경식
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.19-43
    • /
    • 2014
  • 전체 결과의 80%가 전체 원인의 20%에 의해 일어난다는 파레토 법칙(Pareto principle)은 상위 20%의 핵심 고객에 대한 우선적인 마케팅을 비롯하여 기업 경영의 많은 부분에서 적용되어 왔다. 파레토 법칙과는 대조적으로, 80%의 사소한 다수가 20%의 핵심적인 소수보다 우월한 가치를 창출한다는 롱테일 법칙(Long Tail theory)은 ICT(Information and Communication Technology)의 발전과 함께 새로운 경영 패러다임으로 주목 받아오고 있다. 본 연구의 목적은 경영 현장에서 양대 흐름을 형성해온 이러한 법칙들이 변화무쌍한 글로벌 가상화 환경에서 기업의 핵심적인 성공 요인이라고 할 수 있는 가상 지식 협업에는 어떻게 관련되는지를 규명하는 것이다. 이를 위해, 대표적인 가상 지식 협업 커뮤니티인 위키피디아에서 품질 최상위 등급인 피쳐드 아티클(Featured Article) 레벨로 승급된 2,978개의 아티클에 대한 협업 행위를 분석하였다. 즉, 각 아티클 그룹에서 편집 횟수 기준 상위 20%에 속하는 참여자들의 총 편집 횟수가 전체 편집 횟수에서 차지하는 비율인 파레토 비율(Pareto ratio)이 지식 협업 효율성과 어떤 관계를 가지고 있는지를 도출하였다. 그리고, 이러한 연구를 편집 참여를 통한 지식 공유에 대한 전체적인 불평등 정도를 나타내는 지니 계수(Gini coefficient)의 영향 및 그룹의 작업 특성을 반영하도록 확장하였다. 결과적으로, 지식 공유의 파레토 비율과 지니 계수가 증가하면 지식 협업 효율성도 높아지지만, 이러한 변수들이 일정 수준 이상으로 증가하면 오히려 지식 협업 효율성이 낮아지는 역 U자(inverted U-shaped) 관계가 있음을 확인하였다. 그리고, 이러한 관계는 인지적 노력을 상대적으로 더 많이 요구하는 학문적인 특성의 작업에서 더 민감하게 작용하는 것으로 보인다.

인공지능 기술 기반 인슈어테크와 디지털보험플랫폼 성공사례 분석: 중국 평안보험그룹을 중심으로 (Analysis of Success Cases of InsurTech and Digital Insurance Platform Based on Artificial Intelligence Technologies: Focused on Ping An Insurance Group Ltd. in China)

  • 이재원;오상진
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.71-90
    • /
    • 2020
  • 최근 전 세계 보험업계에도 기계학습, 자연어 처리, 딥러닝 등의 인공지능 기술 활용을 통한 디지털 전환이 급속도로 확산하고 있다. 이에 따라 인공지능 기술을 기반으로 한 인슈어테크와 플랫폼 비즈니스 성공을 이룬 해외 보험사들도 증가하고 있다. 대표적으로 중국 최대 민영기업인 평안보험그룹은 '금융과 기술', '금융과 생태계'를 기업의 핵심 키워드로 내세우며 끊임없는 혁신에 도전한 결과, 인슈어테크와 디지털플랫폼 분야에서 괄목할만한 성과를 보이며 중국의 글로벌 4차 산업혁명을 선도하고 있다. 이에 본 연구는 평안보험그룹 인슈어테크와 플랫폼 비즈니스 활동을 ser-M 분석 모델을 통해 분석하여 국내 보험사들의 인공지능 기술기반 비즈니스 활성화를 위한 전략적 시사점을 제공하고자 했다. ser-M 분석 모델은 기업의 경영전략을 주체, 환경, 자원, 메커니즘 관점에서 통합적으로 해석이 가능한 프레임으로, 최고경영자의 비전과 리더십, 기업의 역사적 환경, 다양한 자원 활용, 독특한 메커니즘 관계가 통합적으로 해석되도록 연구하였다. 사례분석 결과, 평안보험은 안면·음성·표정 인식 등 핵심 인공지능 기술을 활용하여 세일즈, 보험인수, 보험금 청구, 대출 서비스 등 업무 전 영역을 디지털로 혁신함으로써 경비 절감과 고객서비스 발전을 이루었다. 또한 '중국 내 온라인 데이터'와 '회사가 축적한 방대한 오프라인 데이터 및 통찰력'을 인공지능, 빅데이터 분석 등 신기술과 결합하여 금융 서비스와 디지털 서비스 사업이 통합된 디지털 플랫폼을 구축하였다. 이러한 평안보험그룹의 성공 배경을 ser-M 관점에서 분석해 보면, 창업자 마밍즈 회장은 4차 산업혁명 시대의 디지털 기술발전, 시장경쟁 및 인구 구조의 변화를 빠르게 포착하여 새로운 비전을 수립하고 디지털 기술중시의 민첩한 리더십을 발휘하였다. 환경변화에 대응한 창업자 주도의 강력한 리더십을 바탕으로 인공지능 기술 투자, 우수 전문인력 확보, 빅데이터 역량 강화 등 내부자원을 혁신하고, 외부 흡수역량의 결합, 다양한 업종 간의 전략적 제휴를 통해 인슈어테크와 플랫폼 비즈니스를 성공적으로 끌어냈다. 이와 같은 성공사례 분석을 통하여 인슈어테크와 디지털플랫폼 도입을 본격 준비하고 있는 국내 보험사들에게 디지털 시대에 필요한 경영 전략과 리더십에 대한 시사점을 줄 수 있다.

불균형 데이터 집합의 분류를 위한 하이브리드 SVM 모델 (A Hybrid SVM Classifier for Imbalanced Data Sets)

  • 이재식;권종구
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.125-140
    • /
    • 2013
  • 어떤 클래스에 속한 레코드의 개수가 다른 클래스들에 속한 레코드의 개수보다 매우 많은 경우에, 이 데이터 집합을 '불균형 데이터 집합'이라고 한다. 데이터 분류에 사용되는 많은 기법들은 이러한 불균형 데이터에 대해서 저조한 성능을 보인다. 어떤 기법의 성능을 평가할 때에 적중률뿐만 아니라, 민감도와 특이도도 함께 측정하여야 한다. 고객의 이탈을 예측하는 문제에서 '유지' 레코드가 다수 클래스를 차지하고, '이탈' 레코드는 소수 클래스를 차지한다. 민감도는 실제로 '유지'인 레코드를 '유지'로 예측하는 비율이고, 특이도는 실제로 '이탈'인 레코드를 '이탈'로 예측하는 비율이다. 많은 데이터 마이닝 기법들이 불균형 데이터에 대해서 저조한 성능을 보이는 것은 바로 소수 클래스의 적중률인 특이도가 낮기 때문이다. 불균형 데이터 집합에 대처하는 과거 연구 중에는 소수 클래스를 Oversampling하여 균형 데이터 집합을 생성한 후에 데이터 마이닝 기법을 적용한 연구들이 있다. 이렇게 균형 데이터 집합을 생성하여 예측을 수행하면, 특이도는 다소 향상시킬 수 있으나 그 대신 민감도가 하락하게 된다. 본 연구에서는 민감도는 유지하면서 특이도를 향상시키는 모델을 개발하였다. 개발된 모델은 Support Vector Machine (SVM), 인공신경망(ANN) 그리고 의사결정나무 기법 등으로 구성된 하이브리드 모델로서, Hybrid SVM Model이라고 명명하였다. 구축과정 및 예측과정은 다음과 같다. 원래의 불균형 데이터 집합으로 SVM_I Model과 ANN_I Model을 구축한다. 불균형 데이터 집합으로부터 Oversampling을 하여 균형 데이터 집합을 생성하고, 이것으로 SVM_B Model을 구축한다. SVM_I Model은 민감도에서 우수하고, SVM_B Model은 특이도에서 우수하다. 입력 레코드에 대해서 SVM_I와 SVM_B가 동일한 예측치를 도출하면 그것을 최종 해로 결정한다. SVM_I와 SVM_B가 상이한 예측치를 도출한 레코드에 대해서는 ANN과 의사결정나무의 도움으로 판별 과정을 거쳐서 최종 해를 결정한다. 상이한 예측치를 도출한 레코드에 대해서는, ANN_I의 출력값을 입력속성으로, 실제 이탈 여부를 목표 속성으로 설정하여 의사결정나무 모델을 구축한다. 그 결과 다음과 같은 2개의 판별규칙을 얻었다. 'IF ANN_I output value < 0.285, THEN Final Solution = Retention' 그리고 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn'이다. 제시되어 있는 규칙의 Threshold 값인 0.285는 본 연구에서 사용한 데이터에 최적화되어 도출된 값이다. 본 연구에서 제시하는 것은 Hybrid SVM Model의 구조이지 특정한 Threshold 값이 아니기 때문에 이 Threshold 값은 대상 데이터에 따라서 얼마든지 변할 수 있다. Hybrid SVM Model의 성능을 UCI Machine Learning Repository에서 제공하는 Churn 데이터 집합을 사용하여 평가하였다. Hybrid SVM Model의 적중률은 91.08%로서 SVM_I Model이나 SVM_B Model의 적중률보다 높았다. Hybrid SVM Model의 민감도는 95.02%이었고, 특이도는 69.24%이었다. SVM_I Model의 민감도는 94.65%이었고, SVM_B Model의 특이도는 67.00%이었다. 그러므로 본 연구에서 개발한 Hybrid SVM Model이 SVM_I Model의 민감도 수준은 유지하면서 SVM_B Model의 특이도보다는 향상된 성능을 보였다.

새로운 결제서비스의 성공요인: 다중사례연구 (Critical Success Factor of Noble Payment System: Multiple Case Studies)

  • 박아름;이경전
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.59-87
    • /
    • 2014
  • 결제서비스에 대한 기존의 연구는 결제서비스의 채택요인 또는 지속적인 사용에 영향을 미치는 요인 등 행동이론을 중심으로 진행되어 왔다. 이러한 요인들이 미치는 영향에 대한 결과는 결제서비스의 종류에 따라 또는 연구 지역에 따라 상이하게 나타나고 있다. 본 연구는 결제 서비스의 종류나 문화등의 변수에 관계없이 새로운 결제 서비스가 성공할 수 있는 일반적인 요인이 무엇인지에 대한 의문에서 시작하게 되었다. 기존 연구에서 중요한 영향을 미친다고 제시한 채택요인들은 실제 결제사례의 결과에 비추어 보면 기존 연구에서 주장한 바와 일치하지 않는 경우를 볼 수 있다. 이러한 이론과 현실사이의 괴리를 발견하고 새로운 결제서비스가 성공하기 위한 근본적이고 결정적인 요인이 무엇인지에 대해 제시하고 사례연구를 통해 가설을 입증하고자 하는 것이 본 연구의 목적이다. 따라서 본 연구는 새로운 결제서비스가 성공하기 위해서는 기존 결제서비스의 비고객에게 이들이 결제할 수 있는 수단을 제공함으로써 새로운 결제 시장을 창출해야 함을 주장한다. 이를 위해 성공한 결제사례인 신용카드, 휴대폰 소액결제, PayPal, Square을 채택하였으며, 기존 결제서비스의 비고객을 3개의 계층으로 분류하여 분석하였다. 그리고 새로운 결제서비스가 어떠한 계층을 타겟으로 하였으며 이들에게 어떠한 결제수단을 제공하여 새로운 시장을 창출하였는지 제시한다. 사례 분석 결과, 성공 사례 모두 본 연구의 가설을 지지하는 것으로 나타났다. 따라서 새로운 결제서비스는 결국 기존의 결제수단으로 거래를 할 수 없었던 이들이 결제를 할 수 있도록 함으로써 성공할 수 있다는 가설을 입증하였다. 모바일 결제서비스가 아직 대중화되지 못한 원인을 본 가설에 비추어 분석해 보면 보면, 기존의 결제 인프라를 이용할 수 있는 바코드, QR코드 기반의 모바일 결제 서비스뿐만 아니라 NFC, BLE, 음파 등의 새로운 기술이 적용된 모바일 결제 서비스가 출시되는 등 새로운 시도가 계속되고 있다. 또한 모바일 월렛은 사용자들이 소지하고 있는 카드정보를 스마트폰에 저장하여 지갑 없이도 결제가 가능하며, 쿠폰 제공, 적립카드 관리, 신분증을 저장하는 등의 다양한 부가적인 기능을 제공하고 있어 성공할 것이라는 전망이 대두되고 있다. 하지만 이러한 서비스들은 본 연구 관점에서 보자면 기존 결제서비스의 비고객이(기존 결제수단을 이용할 수 없었던 사용자) 거래할 수 있는 새로운 결제 수단을 제공해 주지 못하고 있기 때문에 결국 초기사용자에게만 채택될 뿐 대중화되는데 한계가 있을 것으로 예상된다. 반면, 새로운 모바일 결제서비스의 성공사례 중 하나인 PaybyPhone은 기존 코인주차 결제서비스의 비고객인 현금 미소지 고객에게 스마트폰을 이용한 새로운 결제수단을 제공함으로써 새로운 주차 결제 시장을 창출하였으며 현재 미국뿐만 아니라 유럽시장까지 진출하는 등 급성장하고 있다. 결론적으로, 많은 이해관계자들이 모바일 결제시장을 선점하기 위해 다양한 형태의 모바일 결제 서비스를 출시하고 있지만 캐즘을 뛰어넘어 주류 시장에 성공적으로 정착할 수 있느냐는 결국 기존 결제서비스의 비고객군에게 그들이 필요로 하는 새로운 결제수단을 제공하는지의 여부에 달려있다고 볼 수 있다. 따라서 모바일 결제 서비스의 기획자나 매니저들은 서비스 기획 시 기존 결제서비스의 비고객군은 누구인가? 그들은 어떠한 결제수단을 원하는가?를 먼저 고려해야 한다. 본 연구는 새로운 결제서비스가 성공하는데 미치는 요인에 대한 가설을 검증하기 위해 4개의 성공사례를 선택하였으며 각 사례에 동일한 가설을 검증하는 '반복연구논리'를 적용하였다. 본 가설을 더욱 공고히 하기 위해 사례연구방법론에서 제시하고 있는 경쟁가설을 포함한 후속 사례연구가 진행되어야 할 것이다.