• Title/Summary/Keyword: 고강성 설계

Search Result 43, Processing Time 0.028 seconds

Laboratory Performance Evaluation of High Modulus Asphalt Mixes for Long-Life Asphalt Pavements (장수명 아스팔트 포장용 고강성 혼합물의 실내 공용성 평가)

  • Kang, Min Gyun;Lee, Jung Hun;Lee, Hyun Jong;Choi, Ji Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.73-79
    • /
    • 2006
  • A major purpose of this study is to develop high modulus asphalt mixtures for perpetual asphalt pavements which can save maintenance cost by increasing the design and performance periods of the pavements. Various physical and mechanical laboratory tests are performed for the high modulus asphalt binder developed in this study. The test results show that the properties of the high modulus binder are similar to those of the French high modulus binders. In addition to the binder tests, various performance tests are conducted for the high modulus and conventional mixtures. The dynamic modulus test results indicate that the dynamic modulus values of the high modulus mixtures are higher than those of the conventional mixtures by 10~15% at $5^{\circ}C$, 20~25% at $15^{\circ}C$ and 100% at $30^{\circ}C$. It is observed from the performance tests that the high modulus mixtures yield better fatigue, rutting and moisture damage performance than the conventional mixtures.

Performance Evaluation of perpetual Asphalt Pavements Using an Accelerated Pavement Tester (포장가속시험기를 이용한 장수명 아스팔프포장의 공용성 평가 연구)

  • Song, Seo-Gyu;Lee, Jung-Hun;Lee, Hyun-Jong;Hwang, Eui-Yoon
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.1-10
    • /
    • 2005
  • In this study, accelerated pavement tester(APT) was performed on long-life asphalt pavements that can save maintenance and user costs by increasing the design life twice longer than conventional asphalt pavements. Basic material testings are first conducted on a high modulus base(HMB) mixture developed in this study. Four different pavement sections including thin and thick conventional and thin and thick HMB courses are constructed to compare the load-carrying capacities and to investigate the fatigue and rutting performances using an accelerated pavement tester. Tensile strain values at the bottom of base courses under the various loading levels are measured. The tensile strain values of the HMB sections are lower than those of the conventional sections. It is observed from the APT performed on the thin pavement sections that no significant cracks are developed up to the 180,000 cycles of a wheel load. In terms of rutting, only 3mm of rutting is developed in the thick HMB section while 5.3mm of rutting is developed in the thick conventional section at the 90,000 cycles of the wheel load. The HMB material developed in this study can be successfully used in the long-life asphalt pavements because of its excellent fatigue and rutting performances. It is estimated from a series of structural analysis that the use of the HMB material instead of the conventional base materials may reduce the asphalt thickness at least 5cm because of its better load-carrying capacity.

  • PDF

Topology Optimization Design of Machine Tools Head Frame Structures for the Machining of Aircraft Parts (항공기부품가공용 공작기계 헤드프레임 구조의 위상최적화 설계)

  • Yun, Taewook;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2018
  • The head frame structure of a machine tool for aircraft parts, which requires machining precision and machining of difficult-to-cut materials is required to be light-weighted for precision high-speed machining and to minimize possible deformation by cutting force. To achieve high stiffness and for light-weight structure optimization design, a preliminary model was designed based on finite element analysis. The topology optimization design of light-weight, high stiffness, and low vibration frame structure were performed by minimizing compliance. As a result, the frame weight decreased by 17.3%, the maximum deflection was less than 0.007 mm, and the natural frequency increased by 30.6%. The static stiffness was increased in each axis direction and the dynamic stiffness exhibited contrary results according to the axis. Optimized structure with the high stiffness of low vibration in topology optimization design was confirmed.

Development of Long-Life Asphalt Pavements Method Using High Modulus Asphalt Mixes (고강성 기층재를 적용한 장수명 아스팔트포장 공법 개발)

  • Lee Jung-Hun;Lee Hyun-Jong
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.49-61
    • /
    • 2006
  • This study suggests long-life asphalt pavement method which can save maintenance cost by increasing the design and performance period of pavements. The high modulus asphalt binder developed and then various physical tests are performed. Laboratory performance tests and accelerated pavement test are conducted for the high modulus and conventional mixtures. The test results show that dynamic modulus values of high modulus mixtures are higher than those of the conventional mixtures, The high modulus mixtures yield better fatigue, rutting and moisture damage performance than conventional mixtures. Structural analysis is performed and a database is built up for long life asphalt pavement design. Pavement response model is developed through a multiple regression analysis program, SPSS using the database. A design software for the long life pavements is developed based on the pavement response model and laboratory and field performance tests results. In addition, optimum pavement sections and materials are suggested. The suggested AC thickness of long life asphalt pavement is 29cm. A Life cycle cost analysis(LCCA) is conducted to check the economical efficiency of the long life pavement section. The LCCA result shows that initial construction costs of long life and conventional pavements are almost equal, but long life pavement is more profitable in terms of the LCCA.

  • PDF

Design Optimization and Endurance Assessment of Weld Area for LCD Robot Frame (LCD 로봇 주요 프레임에 대한 설계 최적화 및 용접부 수명평가)

  • Han, Sung Wook;Kang, Yun Sik;Kim, Teahyun;Kim, Sang Hyun
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • LCD robot vertical frame lets a arm assembly with glass substrate move up and down, so it must have high stiffness and strength. We applied new manufacturing process by using design optimization process such as topology and size optimization in order to satisfy the request of high stiffness and light weight. The proposed model should be evaluated for endurance strength. Therefore fatigue assessment for weak point of aluminum welding area of vertical frame studied with hot spot stress approach. And the actual stress measuring from test was compared and evaluated with the dynamic stress calculated from multi-body dynamics considering flexible body.

Design of high stiffness and lightweight body for stiffness distribution ratio (강성 배분비를 괴려한 고강성 경량화 차체 설계)

  • Yang, Hee-Jong;Kim, Ki-Chang;Yim, Hong-Jae;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.562-566
    • /
    • 2006
  • Lightweight body can cause a low stiffness due to the decrease of panel thickness and reinforcing member. The other way, high stiffness body demands an increase of mass. Front pillar section area is decreased due to driver's visual field. Global vehicle stiffness is affected by stiffness distribution ratio between upper part and lower part at side body structure. This paper will describe a process used to evaluate the stiffness distribution ratio based on research of strain energy analysis of the tip rotation method. In addition, optimum design schemes are presented for high stiffness and lightweight body structure considering the investigated stiffness distribution ratio. In this way the designer will be aided by a defined design guide and a set of supporting tool to help him work towards a good design

  • PDF

A Study on the Life Prediction Characteristics of the Rolling Bearing in the Machining Center Main Spindle (주축계 구름 베어링의 수명 특성에 관한 연구)

  • Hwang, Pyung;Kwon, Sung-In;Yang, Seung-Han
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.768-772
    • /
    • 1994
  • 공작기계의 주축은 최근 고속화,고정밀화 및 고강성화되어가는 경향이 커지고 있다. 이러한 경향에 따라서 주축의] 설계는 매우 중요하며, 주축용 베어링은 앵귤러 콘택트 볼베어링이 많이 사용되고 있다. 공작기계의 주축은 고속 회전에 따른 고강성의 필요성이 증대하게 되고, 고상성을 얻기 위하여 축 방향의 일정한 예압을 주게된다. 이 예압량은 결국 축 방향의 하중이므로 주축용 베어링의 수명을 변화 시키게 된다. 따라서 축 방향 하중의 변화에 따른 베어링의 수명 특성을 파악하여야 하며, 적절한 베어링 수명의 판단을 통해 기계의 보수 및 관리에 관한 재경비를 절감할 수 있다. 그러므로 본 연구에서는 실험을 통해 베어링의 특성 주파수를 이끌어 내고 주파수 스펙트럼 분석을 이용하여 베어링의 상태를 진단하 는 기본겆인 데이터를 얻는다.

  • PDF

Optimization of the Operating Stiffness of a Two-Axis Parallel Robot (2축 병렬로봇의 작동강성 최적설계)

  • Lee, Jae-Wook;Jang, Jin-Seok;Lee, Sang-Kon;Jeong, Myeong-Sik;Cho, Yong-Jae;Kim, Kun-Woo;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.561-566
    • /
    • 2015
  • In this paper, the operating stiffness of a parallel robot used to handle heavy packages is optimized. Because the studied model, called a "pick and place robot," is applied for packaging logistics, it is important for the robot to be lightweight so that it may respond rapidly and have high stiffness to allow sufficient operating precision. However, these two requirements of low weight and high stiffness are mutually exclusive. Thus, the dynamic characteristics of the robot are analyzed through multibody dynamics analysis, and topology optimization is conducted to achieve this exclusive performance. Lastly, the reliability of the topology optimization is verified by applying the optimized design to the parallel robot.