• Title/Summary/Keyword: 고강도 구조용 내화강

Search Result 5, Processing Time 0.024 seconds

Fatigue Characteristics of High Strength Fire Resistance Steel for Frame Structure and Time-Frequency Analysis its Acoustic Emission Signal (고강도 구조용 내화강의 피로특성 및 음향방출신호의 시간-주파수 해석)

  • Kim, Hyun-Soo;Nam, Ki-Woo;Kang, Chang-Young
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.67-72
    • /
    • 2000
  • Demand for now nondestructive evaluation are growing to detect fatigue crack growth behavior to predict long term performance of materials and structure in aggressive environments especially when they are In non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in fatigue and tensile test of high strength fire resistance steel for frame structure with time-frequency analysis methods. The main frequency range is different in the noise and the fatigue crack propagation. It could be classified that it were also generated by composite fracture mechanics of cleavage, dimple, inclusion separation etc.

  • PDF

A Study on Degradation Characteristic of High Strength Fire Resistance Steel for Frame Structure by Acoustic Emission (음향방출법에 의한 고강도 구조요 내화강의 열화특성에 관한 연구)

  • 김현수;남기우;강창룡
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.51-56
    • /
    • 2000
  • Demand for new nondestructive evaluations is growing to detect tensile crack growth behavior to predict long term performance of materials and structure in aggressive environments, especially when they are in non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in tensile test of high strength fire resistance steel for frame structure with time frequency analysis methods. The results obtained are summaries as follows ; In the T and TN specimen consisting of ferrite and pearlite grains, most of acoustic emission events were produced near yield point, mainly due to the dislocation activities during the deformation. However, B specimen under $600^{\circ}C$ - 10min had a two peak which was attribute to the presence of martensite phase. The first peak is before yield point the second is after yield point. The sources of second acoustic emission peak were the debonding of martensite-martensite interface and the micro-cracking of brittle martensite phase. In $600^{\circ}C$-30min to $700^{\circ}C$-60min specimens, many signals were observed from area before yield point and counts were decreased after yield point.

  • PDF

Effect of Alkali Activators on Early Compressive Strength of Blast-Furnace Slag Mortar (고로슬래그 모르타르의 초기 강도에 대한 알칼리자극제의 영향)

  • Moon, Han-Young;Shin, Dong-Gu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.120-128
    • /
    • 2005
  • In the construction industry, due to the cost rise of raw material for concrete, we have looked into recycling by-products which came from foundry. When using the Ground Granulated Blast-Furnace Slag(SG), it is good for enhancing the qualities of concrete such as reducing hydration heat, increasing fluidity, long-term strength and durability, but it has some problems : construction time is increased or the rotation rate of form is decreased due to low development of early strength. In this study, therefore, to enhance the early strength of SG mortar, we used some alkali activators(KOH, NaOH, $Na_2CO_3$, $Na_2SO_4$, water glass, $Ca(OH)_2$, alum. This paper deals with reacted products, setting time, heat evolution rate, flow and the strength development of SG cement mortar activated by alkali activators. From the results, if alkali activators were selected and added properly, SG is good for using as the materials of mortar and concrete.

Experimental Study to Evaluate the Durability of 100 MPa Class Ultra-high Strength Centrifugal Molding Concrete (100MPa급 초고강도 원심성형 콘크리트의 내구성 평가를 위한 실험연구)

  • Jeong-Hoi Kim;Sung-Jin Kim;Doo-Sung Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.12-23
    • /
    • 2024
  • In this study, a structural concrete square beam was developed using the centrifugal molding technique. In order to secure the bending stiffness of the cross section, the hollow rate of the cross section was set to 10% or less. Instead of using the current poor mixture of concrete and a concrete mixing ratio with a high slump (150-200) and a design strength of 100 MPa or more was developed and applied. In order to investigate the durability of centrifugally formed PSC square beams to be used as the superstructure of the avalanch tunnel or ramen bridge, the durability performance of ultra-high-strength centrifugally formed concrete with a compressive strength of 100 MPa was evaluated in terms of deterioration and chemical resistance properties.Concrete durability tests, including chloride penetration resistance, accelerated carbonation, sulfate erosion resistance, freeze-thaw resistance, and scaling resistance, were performed on centrifugally formed square beam test specimens produced in 2022 and 2023. Considering the information verified in this study, the durability of centrifugally molded concrete, which has increased watertightness in the later manufacturing stage, was found to be superior to that of general concrete.

Role of Graphene Derivatives in Anion Exchange Membrane for Fuel Cell: Recent Trends (연료전지용 음이온교환막에서 그래핀 유도체의 역할: 최근 동향)

  • Manoj, Karakoti;Sang Yong, Nam
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.411-426
    • /
    • 2022
  • Energy plays a significant role in modern lifestyle because of our extensive reliance over energy-operating devices. Therefore, there is a need for alternative and green energy resources that can fulfill the energy demand. For this, fuel cell (FCs) especially anion exchange membrane fuel cells (AEMFCs) have gained tremendous attention over the other (FCs) due to their fast reaction kinetics without using noble catalyst and allow to use of cheaper polymers with high performance. But lack of highly conductive, chemically, and mechanically stable anion exchange membrane (AEM) still main obstacle to the development of high performance AEMFCs. Therefore, graphene-based polymer composite membranes came into the existence as AEMs for the FCs. The exceptional properties of the graphene help to improve the performance of AEMs. Still, there are lot of challenges in the graphene derivatives based AEMs because of their high tendency of agglomeration in polymer matrix which reduced their potential. To overcome this issue surface modification of graphene derivatives is necessary to restrict their agglomeration and conserved their potential features that can help to improve the performance of AEM. Therefore, this review focus on the surface modification of graphene derivatives and their role in the fabrication of AEMs for the FCs.