• Title/Summary/Keyword: 계층적 유사도

Search Result 429, Processing Time 0.028 seconds

A Novel Linkage Metric for Overlap Allowed Hierarchical Clustering (중복을 허용하는 계층적 클러스터링 기법에서 클러스터 간 유사도 평가)

  • Jeon, Joon-Woo;Song, Kwang-Ho;Kim, Yoo-Sung
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.157-161
    • /
    • 2016
  • 본 논문에서는 클러스터 간의 중복을 허용한 계층적 클러스터링(hierarchical clustering) 기법에 적합한 클러스터 간 유사도 평가방법(linkage metric)을 제안하였다. 클러스터 간 유사도 평가방법은 계층적 클러스터링에서 클러스터를 통합하거나 분해하는데 쓰이며 사용된 방법에 따라 클러스터링의 결과가 다르게 형성된다. 기존의 클러스터 간 유사도 평가방법인 single linkage, complete linkage, average linkage 중 single linkage와 complete linkage는 클러스터 간 중복이 허용된 환경에서 정확도가 낮은 문제점이 있고, average linkage는 정확도가 두 방법에 비해 높지만 계산 시간 소요가 크다는 단점이 있다. 따라서 본 논문에서는 기존의 average linkage를 개선하여 중복된 데이터에 의한 필요 계산량을 크게 줄임으로써 시간적 성능이 우수한 클러스터 간 유사도 평가방법을 제안하였다. 또한, 제안된 방법을 기존 방법들과 비교실험하여 중복을 허용하는 계층적 클러스터링 환경에서 정확도는 비슷하거나 더 높고, average linkage에 비해 계산량이 감소됨을 확인하였다.

  • PDF

A Study on the Relationship between Class Similarity and the Performance of Hierarchical Classification Method in a Text Document Classification Problem (텍스트 문서 분류에서 범주간 유사도와 계층적 분류 방법의 성과 관계 연구)

  • Jang, Soojung;Min, Daiki
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.3
    • /
    • pp.77-93
    • /
    • 2020
  • The literature has reported that hierarchical classification methods generally outperform the flat classification methods for a multi-class document classification problem. Unlike the literature that has constructed a class hierarchy, this paper evaluates the performance of hierarchical and flat classification methods under a situation where the class hierarchy is predefined. We conducted numerical evaluations for two data sets; research papers on climate change adaptation technologies in water sector and 20NewsGroup open data set. The evaluation results show that the hierarchical classification method outperforms the flat classification methods under a certain condition, which differs from the literature. The performance of hierarchical classification method over flat classification method depends on class similarities at levels in the class structure. More importantly, the hierarchical classification method works better when the upper level similarity is less that the lower level similarity.

A Novel Linkage Metric for Overlap Allowed Hierarchical Clustering (중복을 허용하는 계층적 클러스터링 기법에서 클러스터 간 유사도 평가)

  • Jeon, Joon-Woo;Song, Kwang-Ho;Kim, Yoo-Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.157-161
    • /
    • 2016
  • 본 논문에서는 클러스터 간의 중복을 허용한 계층적 클러스터링(hierarchical clustering) 기법에 적합한 클러스터 간 유사도 평가방법(linkage metric)을 제안하였다. 클러스터 간 유사도 평가방법은 계층적 클러스터링에서 클러스터를 통합하거나 분해하는데 쓰이며 사용된 방법에 따라 클러스터링의 결과가 다르게 형성된다. 기존의 클러스터 간 유사도 평가방법인 single linkage, complete linkage, average linkage 중 single linkage와 complete linkage는 클러스터 간 중복이 허용된 환경에서 정확도가 낮은 문제점이 있고, average linkage는 정확도가 두 방법에 비해 높지만 계산 시간 소요가 크다는 단점이 있다. 따라서 본 논문에서는 기존의 average linkage를 개선하여 중복된 데이터에 의한 필요 계산량을 크게 줄임으로써 시간적 성능이 우수한 클러스터 간 유사도 평가방법을 제안하였다. 또한, 제안된 방법을 기존 방법들과 비교 실험하여 중복을 허용하는 계층적 클러스터링 환경에서 정확도는 비슷하거나 더 높고, average linkage에 비해 계산량이 감소됨을 확인하였다.

  • PDF

Implementation of Hierarchical Content-based Image Retrieval System using CCV & GLCM (CCV와 GLCM을 이용한 계층적 내용기반 영상검색시스템의 구현)

  • 이경자;정성환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.04a
    • /
    • pp.28-33
    • /
    • 1998
  • 대량의 영상데이터베이스에서 질의영상에 대한 유사영상을 검색할 때의 유사도 계산을 위한 시간소모는 영상의 실시간 검색효율을 저하시키는 요인이 된다. 본 논문에서는 키영상(key image)을 이용하여 영상데이터베이스의 각 영상과 키영상의 유사도를 미리 계산해 둠으로써 질의영상과 데이터베이스 영상간의 유사도 계산시간을 단축시킨다. 그리고 검색효율을 높이기 위해 1차적으로 칼라특징으로 유사영상들을 분류한 후, 1차 분류된 영상들만을 대상으로 계층적으로 질감특징값으로 영상을 비교함으로써 검색효율을 상승시킨다. Oracle 데이터베이스 상에서 본 계층적 내용기반 영상검색시스템을 구현하였다.

  • PDF

Similarity-based Image Clustering Method using Hierarchical Clustering Technique (다단계 클러스터링 기법을 이용한 이미지 클러스터링 기법에 관한 연구)

  • 한정규;김석대;황수찬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.707-709
    • /
    • 2003
  • 본 논문에서는 유사도(similarity) 기반 이미지 클러스터링 기법에 대하여 논하고자 한다. 비트맵 이미지의 특징을 추출하고 이러한 특징에 기반한 유사도 측정 함수들을 소개하고 이미지 클러스터링 알고리즘과 구현을 통한 실험 예제들에 대해서 설명한다. 이 실험에서 우리는 유사도에 따라 이미지들이 계층적(Hierarchical)으로 집단화 되는 계층적 클러스터링 알고리즘을 사용하였다. 이미지의 특징 표현을 위해서는 HSV 기반의 히스토그램을 이용하였다. 본 논문에서 제안한 기법의 실험 결과는 이미지 데이터베이스에서 유사한 이미지를 검색하는데 높은 효율성이 있는 것을 보여준다.

  • PDF

Multi-class Support Vector Machines Model Based Clustering for Hierarchical Document Categorization in Big Data Environment (빅 데이터 환경에서 계층적 문서 유형 분류를 위한 클러스터링 기반 다중 SVM 모델)

  • Kim, Young Soo;Lee, Byoung Yup
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.600-608
    • /
    • 2017
  • Recently data growth rates are growing exponentially according to the rapid expansion of internet. Since users need some of all the information, they carry a heavy workload for examination and discovery of the necessary contents. Therefore information retrieval must provide hierarchical class information and the priority of examination through the evaluation of similarity on query and documents. In this paper we propose an Multi-class support vector machines model based clustering for hierarchical document categorization that make semantic search possible considering the word co-occurrence measures. A combination of hierarchical document categorization and SVM classifier gives high performance for analytical classification of web documents that increase exponentially according to extension of document hierarchy. More information retrieval systems are expected to use our proposed model in their developments and can perform a accurate and rapid information retrieval service.

Exploration of Hierarchical Techniques for Clustering Korean Author Names (한글 저자명 군집화를 위한 계층적 기법 비교)

  • Kang, In-Su
    • Journal of Information Management
    • /
    • v.40 no.2
    • /
    • pp.95-115
    • /
    • 2009
  • Author resolution is to disambiguate same-name author occurrences into real individuals. For this, pair-wise author similarities are computed for author name entities, and then clustering is performed. So far, many studies have employed hierarchical clustering techniques for author disambiguation. However, various hierarchical clustering methods have not been sufficiently investigated. This study covers an empirical evaluation and analysis of hierarchical clustering applied to Korean author resolution, using multiple distance functions such as Dice coefficient, Cosine similarity, Euclidean distance, Jaccard coefficient, Pearson correlation coefficient.

A Hierarchical Representatives Clustering Technique for Data Mining (데이터 마이닝을 위한 계층적 대표값 군집화 기법)

  • 안병주;김은주;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.69-71
    • /
    • 2000
  • 군집화는 데이터 집합을 유사한 데이터 개체들의 군집들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 과정이다. 대부분의 군집화 기법들은 비교적 적은 양의 데이터를 대상으로 한 것이고 다차원 대용량의 데이터 처리에 관한 문제는 다루지 않고 있어서 데이터 마이닝을 위한 군집화 기법으로는 부적절하다. 따라서 본 논문을 통해 대용량의 데이터에 적용할 수 있는 새로운 군집화 알고리즘인 계층적 대표값 군집화(HRC) 기법을 제안한다. HRC는 자기조직화지도와 계층적 군집화 기법을 접목한 하이브리드 방법으로 두 단계에 거쳐 군집화를 수행한다. 첫 번째 단계에서 자기조직화지도를 통해 데이터를 요약하고, 두 번째 단계에서 요약된 대표값 정보만을 가지고 계층적인 군집화를 수행한다. 또한, 두 번째 단계의 계층적 군집화 적용시 양질의 군집을 발견하기 위해 군집간의 유사도를 측정하는 새로운 척도를 고안하였다. 그리고 실험을 통해 HRC와 기존 군집화 알고리즘이 발견한 군집의 질을 비교하여 성능을 평가했다.

  • PDF

Video Data Modeling for Supporting Structural and Semantic Retrieval (구조 및 의미 검색을 지원하는 비디오 데이타의 모델링)

  • 복경수;유재수;조기형
    • Journal of KIISE:Databases
    • /
    • v.30 no.3
    • /
    • pp.237-251
    • /
    • 2003
  • In this paper, we propose a video retrieval system to search logical structure and semantic contents of video data efficiently. The proposed system employs a layered modelling method that orBanifes video data in raw data layer, content layer and key frame layer. The layered modelling of the proposed system represents logical structures and semantic contents of video data in content layer. Also, the proposed system supports various types of searches such as text search, visual feature based similarity search, spatio-temporal relationship based similarity search and semantic contents search.

Counseling Case Retrieval System Using Hierarchical Clustering and Sentence Relevance Feedback (계층적 클러스터링과 문장 적합성 피드백을 이용한 상담사례 검색 시스템)

  • 김승일;곽희규;김수형
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.172-174
    • /
    • 1999
  • 본 논문에서는 카운셀링을 원하는 사용자가 카운셀러와 전자메일을 통해 상담을 원할 때 사용자의 상담 내용에 근거하여 유사한 사례를 검색해 주는 시스템을 제안한다. 제안방법은 문서의 계층적 클러스터링과 용어 적합성 피드백을 상담 사례 검색 시스템에 적용시켜, 상담사례에 나타나는 단어의 출현 빈도와 유사도를 통해 트리 구조를 형성하고, 이 트리 구조를 통한 하향 탐색을 수행한다. 하향 탐색을 하는 도중 노드의 매칭함수의 값이 서로 유사하여 노드 선택이 어려울 경우, 사용자에게 질의를 통해 용어를 제시하고, 사용자의 피드백을 통해 입력된 사연 내용의 가중치를 개선하여 내용에 가장 부합되는 문서를 탐색한다.

  • PDF