• Title/Summary/Keyword: 계층적 비디오 코딩기법

Search Result 35, Processing Time 0.025 seconds

A Utility-Based Hybrid Error Recovery Scheme for Multimedia Transmission over 3G Cellular Broadcast Networks (3G 방송망에서의 효율적인 멀티미디어 전송을 위한 유틸리티 기반 하이브라드 에러 복구기법)

  • Kang Kyung-Tae;Cho Yong-Jin;Cho Yong-Woo;Cho Jin-Sung;Shin Heon-Shik
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.4
    • /
    • pp.333-342
    • /
    • 2006
  • The cdma2000 lxEV - DO mobile communication system provides broadcast and multicast services (BCMCS) to meet an increasing demand from multimedia data services. The servicing of video streams over a BCMCS network must, however, face a challenge from the unreliable and error-prone nature of the radio channel. The BCMCS network uses Reed-Solomon coding integrated with the MAC protocol for error recovery. We analyze this coding technique and show that it is not effective in the case of slowly moving mobiles. To improve the playback quality of an MPEG-4 FGS video stream, we propose the Hybrid error recovery scheme, which combines Reed-Solomon with ARQ, using slots which are saved by reducing the Reed-Solomon coding overhead. The target packets to be retransmitted are prioritized by a utility function to reduce the packet error rate in the application layer within a fixed retransmission budget. This is achieved by considering of the map of the error control block at each mobile node. The proposed Hybrid error recovery scheme also uses the characteristics of MPEG-4 FGS (fine granularity scalability) to improve the video quality even when conditions are adverse: slow-moving nodes and a high error rate in the physical channel.

An Active Queue Management Algorithm Based on the Temporal Level for SVC Streaming (SVC 스트리밍을 위한 시간 계층 기반의 동적 큐 관리 알고리즘)

  • Koo, Ja-Hon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.425-436
    • /
    • 2009
  • In recent years, the user demands have increased for multimedia service of high quality over the broadband convergence network. These rising demands for high quality multimedia service led the popularization of various user terminals and large scale display equipments, which needs a variety type of QoS (Quality of Service). In order to support demands for QoS, numerous research projects are in progress both from the perspective of network as well as end system; For example, at the network perspective, QoS guaranteeing by improving of internet performance such as Active Queue Management, while at the end system perspective, SVC (Scalable Video Coding) encoding scheme to guarantee media quality. However, existing AQM algorithms have problems which do not guarantee QoS, because they did not consider the essential characteristics of video encoding schemes. In this paper, it is proposed to solve this problem by deploying the TS- AQM (Temporal Scalability Active Queue Management) which employs the differentiated packet dropping for dependency of the temporal level among the frames, based on SVC encoding characteristics by exploiting the TID (Temporal ID) field of the SVC NAL unit header. The proposed TS-AQM guarantees multimedia service quality through video decoding reliability for SVC streaming service, by differentiated packet dropping when congestion exists.

Cross-layer Design of Packet Scheduling for Real-Time Multimedia Streaming (실시간 멀티미디어 스트리밍을 위한 계층 통합 패킷 스케줄링 기법)

  • Hong, Sung-Woo;Won, You-Jip
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1151-1168
    • /
    • 2009
  • Improving packet loss does not necessarily coincide with the improvement in user perceivable QoS because each frame carries different degree of importance. We propose Significance-aware packet scheduling (SAPS) to maximize user perceivable QoS. SAPS carries out two fundamental issues of packet scheduling: "What to transmit" and "When to transmit?" To adapt to the available bandwidth, it is necessarily to transmit the subset of the data packets if the entire set of packets can not be transmitted. "Packet Significance" quantifies the importance of the frame by elaborately incorporating frames' dependency. Greedy approach is used in selecting packets and transmission schedule is determined based on the Packet Significance. The proposed scheme is tested using publicly available MPEG-4 video clips. Decoding engine is embedded in the simulation software and user perceivable QoS is exposeed in termstermiSNR. Throughout the simulation based experiment, the performance of the proposed scheme is compared two other schemes: Size-based packet scheduling and Bit-rate based best effort packet scheduling. SAPS successfully incorporates the semantics of a packet and improves user perceivable QoS significantly. It successfully provides unequal protection to more important packets.

Hierarchical Modulation Scheme for 3D Stereoscopic Video Transmission Over Maritime Channel Environment (해양 채널 환경에서 3D 입체영상의 전송을 위한 계층변조 기법)

  • You, Dongho;Lee, Seong Ro;Kim, Dong Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1405-1412
    • /
    • 2015
  • Recently, Due to the rapid growth of broadcasting communication and video coding technologies, the demands for immersive media contents based on 3D stereoscopic video will increase steadily. And the demands must ultimately provide the contents for users which are in wireless channel such as vehicle, train, and ship. Thus, in this paper, we transmit the 3D stereoscopic video over the maritime Rician channel that direct wave is more dominant than reflective wave. Besides, we present unequel error protection (UEP) by applying hierarchical 4/16-QAM to V+D(Video plus Depth) format which can represent 3D stereoscopic video. We expect our system to provide seamless broadcasting service for users with poor reception condition.

A Packet Loss Control Scheme based on Network Conditions and Data Priority (네트워크 상태와 데이타 중요도에 기반한 패킷 손실 제어 기법)

  • Park, Tae-Uk;Chung, Ki-Dong
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • This study discusses Application-layer FEC using erasure codes. Because of the simple decoding process, erasure codes are used effectively in Application-layer FEC to deal with Packet-level errors. The large number of parity packets makes the loss rate to be small, but causes the network congestion to be worse. Thus, a redundancy control algorithm that can adjust the number of parity packets depending on network conditions is necessary. In addition, it is natural that high-priority frames such as I frames should produce more parity packets than low-priority frames such as P and B frames. In this paper, we propose a redundancy control algorithm that can adjust the amount of redundancy depending on the network conditions and depending on data priority, and test the performance in simple links and congestion links.