Proceedings of the Korea Information Processing Society Conference
/
2018.05a
/
pp.369-372
/
2018
최근 지식경영에 있어 특허를 통한 지식재산권 확보는 기업 운영에 큰 영향을 주는 요소이다. 성공적인 특허 확보를 위해서, 먼저 변화하는 특허 분류 제계를 이해하고, 방대한 특허 정보 데이터를 빠르고 신속하게 특허 분류 체계에 따라 분류화 시킬 필요가 있다. 본 연구에서는 머신 러닝 기술 중에서도 계층적 주의 네트워크를 활용하여 특허 자료의 초록을 학습시켜 분류를 할 수 있는 방법을 제안한다. 그리고 본 연구에서는 제안된 계층적 주의 네트워크의 성능을 검증하기 위해 수정된 입력데이터와 다른 워드 임베딩을 활용하여 진행하였다. 이를 통하여 특허 문서 분류에 활용하려는 계층적 주의 네트워크의 성능과 특허 문서 분류 활용화 방안을 보여주고자 한다. 본 연구의 결과는 많은 기업 지식경영에서 실용적으로 활용할 수 있도록 지식경영 연구자, 기업의 관리자 및 실무자에게 유용한 특허분류기법에 관한 이론적 실무적 활용 방안을 제시한다.
Proceedings of the Korean Information Science Society Conference
/
2006.06b
/
pp.49-51
/
2006
휴대폰의 사용영역이 넓어지면서 휴대폰에 저장되는 컨텍스트 정보 활용에 관심이 높아지고 있다. 하지만 정보의 양이 방대하기 때문에 개인이 정보를 분석하여 자신에게 필요한 정보로 바꾸기 위해서는 많은 노력이 필요하다. 본 논문에서는 휴대폰으로부터 컨텍스트 정보를 수집하여 활용할 수 있는 방법으로 개인이 하루 동안 경험한 일에 대한 정보를 한 눈에 알아볼 수 있도록 도와주는 계층적 이야기 구성 모델을 제안한다. 계층적 이야기 구성 모델은 3단계로 구성된다. 우선 각각의 로그를 분석하여 관련 있는 것들을 그룹으로 분류하고 분류된 그룹 내에서 설정된 경로에 대한 가중치를 계산하여 해당 그룹의 가중치로 저장한다. 마지막으로 그룹간의 경로에 대한 가중치를 계산하여 가장 높은 가중치를 갖는 경로를 한아 이야기 구성 모델로 설정한다. 계층적으로 이야기 경로를 선택한 경우와 그룹으로 분류하지 않고 경로를 계산한 경우의 시간 복잡도를 비교 평가하여 성능을 측정하였다. 이야기 구성모델을 계층적으로 분류했을 때의 성능이 분류하지 않은 경우보다 경로를 선정할 때 더 높은 성능을 나타내었다.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.1
/
pp.249-256
/
2024
Machine learning-based intrusion detection methodologies require a large amount of uniform learning data for each class to be classified, and have the problem of having to retrain the entire system when adding an attack type to be detected or classified. In this paper, we use feature learning and hierarchical classification methods to solve classification problems and data imbalance problems using relatively little training data, and propose an intrusion detection methodology that makes it easy to add new attack types. The feasibility of the proposed system was verified through experiments using KDD IDS data..
Annual Conference on Human and Language Technology
/
2006.10e
/
pp.109-116
/
2006
자연 언어의 각 어휘는 서로 관계를 가지고 계층적 입체적 모델로 존재한다. 이러한 전제에서 출발한 연구 가운데 대표적인 것이 의미 계층이다. 본고에서는 한국어 형용사의 의미 계층을 추출하는 것을 목표로 하여, 형식적 객관적 방법론을 정립하고, 결과를 비교적 신속하고 정확하게 이끌어 낼 수 있는 전산적 처리 도입하였다. 우선 전체 구축에 필요한 절차를 세우고 각 단계에서 필요한 방법과 휴리스틱을 정리하였다. 이를 바탕으로 사전 뜻풀이말을 이용하여 반자동으로 작업하였으며, 일부 코퍼스를 활용하였다 최종 알고리즘으로는 Top-Down 방식을 택하였다. 이렇게 추출된 한국어 형용사 의미 계층은 226개의 최상위어에서 시작하여 총 3,792개의 표제어를 망라한다. 또한 수직적 계열 관계만을 명시했을 경우 나타날 수 있는 한계를 보완하기 위해, 동의어 반의어와 같은 수평적 의미 관계와 공기 명사와 같은 결합 관계 등을 함께 기술하였다. 한편 표제항을 뜻풀이말의 공기 명사를 이용하여 의미별로 분류하고 각 분류마다 별도의 의미 계층을 수립하였다.
Journal of the Korean Data and Information Science Society
/
v.25
no.5
/
pp.999-1009
/
2014
Hierarchical clustering analysis helps easily exploring massive microarray data and understanding biological phenomena with dendrogram. But, because hierarchical clustering algorithms only consider the absolute similarity, it is difficult to illustrate a relative dissimilarity, which consider not only the distance between a pair of clusters, but also how distant are they from the rest of the clusters. In this study, we introduced the relative hierarchical clustering method proposed by Mollineda and Vidal (2000) and compared hierarchical clustering method and relative hierarchical method using the simulated data and the real data in the various situations. The evaluation of the quality of two hierarchical methods was performed using percentage of incorrectly grouped points (PIGP), homogeneity and separation.
Proceedings of the Korea Information Processing Society Conference
/
2002.04a
/
pp.569-572
/
2002
한글을 인식하기 위한 전처리 방법으로 흔히 모음의 종류 및 자음과의 결합 정도에 따라 6가지 유형으로 분류하는 방법을 많이 사용하고 있다. 간 논문에서는 이러한 한글 문자를 인식하기 위한 전처리 과정으로써 한글의 유형을 분류하는 방법에 대한 연구로 계층적인 신경회로망을 도입하여 빠르고 신뢰성 있는 분류 방법을 제안한다. 실험에 사용된 글자는 KS X 1001(KS C 5601) 완성형 글자 2,350개에 대한 굴림, 바탕, 돋움, 궁서 글꼴로 총 9400개의 이미지 파일을 사용하였으며. 이 중 일부는 훈련에 사용하고 나머지는 분류를 위한 테스트 데이터로 사용한 결과 약 94%의 유형 분류율과 개별 패턴을 5.67ms에 분류하는 빠른 분류 속도를 나타내었다.
기본적으로 모든 소비자들은 조금씩 다르며, 제품은 그 차이를 극대화 시킴으로써 다양한 소비를 촉진하게 된다. 이와 같은 시장 세분화와 포지셔닝 전략은 디자인 경영에 있어 매우 중요한 전략적 단계라 할 수 있으며, 기업의 소비자 분석의 목적이기도 하다. 다차원 척도법은 군집 분석에서와 마찬가지로 자료에 내재된 구조를 찾아내어 자료를 함축적으로 표현하고자 하는 자료축약형 다변량 분석 기법이다. 패턴 분류의 수량화를 이용하는 POSA(Partial Order Scalogram Analysis)는 MSA(Multidimensional Scalogram Analysis)의 구조화된 방법으로 디자인 전략을 수립하는 단계에서 소비자의 성향을 보다 세분화할 수 있다. 본 논문에서는 디자인 리서치 단계에 POSA 방법론을 적용하였을 때 소비자 유형 분류가 가능하다고 보고, 창의적 디자인 컨셉의 도출에 어느 정도 역할을 하는지 알아보고자 함을 목적으로 하였다. 본 연구에서는 부분적 계층 분석법인 POSA 분석방법을 통하여 사용자의 계층을 세분화하는 방법을 고안하고, 이를 분석함으로써 소비자의 유형을 분류하여 디자인 포지셔닝과 방향을 제시하는 방법론을 제안하고자 하였다. 이를 위하여 설문조사를 통하여 POSA 기법을 이용한 소비자 유형 분류 방법이 고안되었고, 이를 기반으로 모바일 기기를 위한 프로젝트에 실제 디자인 사례로 적용되었으며, 이러한 소비자 유형 분석을 통하여 타겟 유저의 시나리오 작성 단계에서 창의적 발상을 지원한다는 점을 발견할 수 있었다.
In this paper, we proposed a new pattern classifier which can be incrementally learned, be added new class in learning time, and handle with analog data. Proposed pattern classifier has hierarchical structure and the classification rate is improved by using different metric for each levels. Proposed model is based on the Gaussian ARTMAP which is an artificial neural network model for the pattern classification. We hierarchically constructed the Gaussian ARTMAP and proposed the Principal Component Emphasis(P.C.E) method to be learned different features in each levels. And we defined new metric based on the P.C.E. P.C.E is a method that discards dimensions whose variation are small, that represents common attributes in the class. And remains dimensions whose variation are large. In the learning process, if input pattern is misclassified, P.C.E are performed and the modified pattern is learned in sub network. Experimental results indicate that Hierarchical Gaussian ARTMAP yield better classification result than the other pattern recognition algorithms on variable data set including real applicable problem.
Journal of the Korea Institute of Information and Communication Engineering
/
v.10
no.12
/
pp.2335-2342
/
2006
The current web is accumulating abundant information. In particular, text based documents are a type used very easily and frequently by human. So, numerous researches are progressed to retrieve the text documents using many methods, such as probability, statistics, vector similarity, Bayesian, and so on. These researches however, could not consider both subject and semantic of documents. So, to overcome the previous problems, we propose the document similarity method for semantic retrieval of document users want. This is the core method of document clustering. This method firstly, expresses a hierarchy semantically of document content ut gives the important hierarchy domain of document to weight. With this, we could measure the similarity between documents using both the domain weight and concepts coincidence in the domain hierarchies.
Proceedings of the Korea Information Processing Society Conference
/
2003.05a
/
pp.281-284
/
2003
본 연구는 웨이블릿 변환을 통하여 객체 영상에서 질감 특징 값을 추출하고, 신경망을 계층적으로 구성하여 분류하는 방법을 제안한다. 기존의 신경망을 이용한 영상의 분류는 단일 신경망을 이용하는 것이 대부분이었다. 하지만 단일 신경망은 분류하고자 하는 클래스의 수가 많거나 분류하고자 하는 대상이 유사한 입력패턴을 가질 경우 학습시간이 오래 걸리고, 인식률이 크게 떨어지는 문제를 가지고 있다. 그래서 본 연구에서는 효과적인 객체 영상 분류를 위해서 여러 개의 단일 신경망을 계층적으로 결합하는 방법을 제안한다. 실험결과 분류 대상 클래스가 증가함에도 불구하고 단일 신경망에 비해 학습시간이 단축되고, 높은 인식률을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.