• Title/Summary/Keyword: 계층적 분류 방법

Search Result 348, Processing Time 0.023 seconds

Patent Document Classification by Using Hierarchical Attention Network (계층적 주의 네트워크를 활용한 특허 문서 분류)

  • Jang, Hyuncheol;Han, Donghee;Ryu, Teaseon;Jang, Hyungkuk;Lim, HeuiSeok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.369-372
    • /
    • 2018
  • 최근 지식경영에 있어 특허를 통한 지식재산권 확보는 기업 운영에 큰 영향을 주는 요소이다. 성공적인 특허 확보를 위해서, 먼저 변화하는 특허 분류 제계를 이해하고, 방대한 특허 정보 데이터를 빠르고 신속하게 특허 분류 체계에 따라 분류화 시킬 필요가 있다. 본 연구에서는 머신 러닝 기술 중에서도 계층적 주의 네트워크를 활용하여 특허 자료의 초록을 학습시켜 분류를 할 수 있는 방법을 제안한다. 그리고 본 연구에서는 제안된 계층적 주의 네트워크의 성능을 검증하기 위해 수정된 입력데이터와 다른 워드 임베딩을 활용하여 진행하였다. 이를 통하여 특허 문서 분류에 활용하려는 계층적 주의 네트워크의 성능과 특허 문서 분류 활용화 방안을 보여주고자 한다. 본 연구의 결과는 많은 기업 지식경영에서 실용적으로 활용할 수 있도록 지식경영 연구자, 기업의 관리자 및 실무자에게 유용한 특허분류기법에 관한 이론적 실무적 활용 방안을 제시한다.

A Hierarchical Storytelling Model Using Mobile Context Log (모바일 컨텍스트 로그를 사용한 계층적 이야기 구성 모델)

  • Lee Byung-Gil;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.49-51
    • /
    • 2006
  • 휴대폰의 사용영역이 넓어지면서 휴대폰에 저장되는 컨텍스트 정보 활용에 관심이 높아지고 있다. 하지만 정보의 양이 방대하기 때문에 개인이 정보를 분석하여 자신에게 필요한 정보로 바꾸기 위해서는 많은 노력이 필요하다. 본 논문에서는 휴대폰으로부터 컨텍스트 정보를 수집하여 활용할 수 있는 방법으로 개인이 하루 동안 경험한 일에 대한 정보를 한 눈에 알아볼 수 있도록 도와주는 계층적 이야기 구성 모델을 제안한다. 계층적 이야기 구성 모델은 3단계로 구성된다. 우선 각각의 로그를 분석하여 관련 있는 것들을 그룹으로 분류하고 분류된 그룹 내에서 설정된 경로에 대한 가중치를 계산하여 해당 그룹의 가중치로 저장한다. 마지막으로 그룹간의 경로에 대한 가중치를 계산하여 가장 높은 가중치를 갖는 경로를 한아 이야기 구성 모델로 설정한다. 계층적으로 이야기 경로를 선택한 경우와 그룹으로 분류하지 않고 경로를 계산한 경우의 시간 복잡도를 비교 평가하여 성능을 측정하였다. 이야기 구성모델을 계층적으로 분류했을 때의 성능이 분류하지 않은 경우보다 경로를 선정할 때 더 높은 성능을 나타내었다.

  • PDF

Intrusion Detection Approach using Feature Learning and Hierarchical Classification (특징학습과 계층분류를 이용한 침입탐지 방법 연구)

  • Han-Sung Lee;Yun-Hee Jeong;Se-Hoon Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.249-256
    • /
    • 2024
  • Machine learning-based intrusion detection methodologies require a large amount of uniform learning data for each class to be classified, and have the problem of having to retrain the entire system when adding an attack type to be detected or classified. In this paper, we use feature learning and hierarchical classification methods to solve classification problems and data imbalance problems using relatively little training data, and propose an intrusion detection methodology that makes it easy to add new attack types. The feasibility of the proposed system was verified through experiments using KDD IDS data..

The Computational Extraction of Semantic Hierarchies for Korean Adjectives (한국어 형용사 의미계층의 전산적 추출)

  • Song, Sang-Houn;Choe, Jae-Woong
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.109-116
    • /
    • 2006
  • 자연 언어의 각 어휘는 서로 관계를 가지고 계층적 입체적 모델로 존재한다. 이러한 전제에서 출발한 연구 가운데 대표적인 것이 의미 계층이다. 본고에서는 한국어 형용사의 의미 계층을 추출하는 것을 목표로 하여, 형식적 객관적 방법론을 정립하고, 결과를 비교적 신속하고 정확하게 이끌어 낼 수 있는 전산적 처리 도입하였다. 우선 전체 구축에 필요한 절차를 세우고 각 단계에서 필요한 방법과 휴리스틱을 정리하였다. 이를 바탕으로 사전 뜻풀이말을 이용하여 반자동으로 작업하였으며, 일부 코퍼스를 활용하였다 최종 알고리즘으로는 Top-Down 방식을 택하였다. 이렇게 추출된 한국어 형용사 의미 계층은 226개의 최상위어에서 시작하여 총 3,792개의 표제어를 망라한다. 또한 수직적 계열 관계만을 명시했을 경우 나타날 수 있는 한계를 보완하기 위해, 동의어 반의어와 같은 수평적 의미 관계와 공기 명사와 같은 결합 관계 등을 함께 기술하였다. 한편 표제항을 뜻풀이말의 공기 명사를 이용하여 의미별로 분류하고 각 분류마다 별도의 의미 계층을 수립하였다.

  • PDF

Microarray data analysis using relative hierarchical clustering (상대적 계층적 군집 방법을 이용한 마이크로어레이 자료의 군집분석)

  • Woo, Sook Young;Lee, Jae Won;Jhun, Myoungshic
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.999-1009
    • /
    • 2014
  • Hierarchical clustering analysis helps easily exploring massive microarray data and understanding biological phenomena with dendrogram. But, because hierarchical clustering algorithms only consider the absolute similarity, it is difficult to illustrate a relative dissimilarity, which consider not only the distance between a pair of clusters, but also how distant are they from the rest of the clusters. In this study, we introduced the relative hierarchical clustering method proposed by Mollineda and Vidal (2000) and compared hierarchical clustering method and relative hierarchical method using the simulated data and the real data in the various situations. The evaluation of the quality of two hierarchical methods was performed using percentage of incorrectly grouped points (PIGP), homogeneity and separation.

A Study on the Classification of Hangeul Patterns Using Hierarchical Neural Network (계층적 신경회로망을 이용한 한글 패턴 분류에 관한 연구)

  • Kim, Do-Hyeon;Lee, Byeong-Mo;Cha, Eui-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.569-572
    • /
    • 2002
  • 한글을 인식하기 위한 전처리 방법으로 흔히 모음의 종류 및 자음과의 결합 정도에 따라 6가지 유형으로 분류하는 방법을 많이 사용하고 있다. 간 논문에서는 이러한 한글 문자를 인식하기 위한 전처리 과정으로써 한글의 유형을 분류하는 방법에 대한 연구로 계층적인 신경회로망을 도입하여 빠르고 신뢰성 있는 분류 방법을 제안한다. 실험에 사용된 글자는 KS X 1001(KS C 5601) 완성형 글자 2,350개에 대한 굴림, 바탕, 돋움, 궁서 글꼴로 총 9400개의 이미지 파일을 사용하였으며. 이 중 일부는 훈련에 사용하고 나머지는 분류를 위한 테스트 데이터로 사용한 결과 약 94%의 유형 분류율과 개별 패턴을 5.67ms에 분류하는 빠른 분류 속도를 나타내었다.

  • PDF

A Study on the User Segmentation Analysis through POSA method (POSA 분석을 통한 소비자 유형 분류에 관한 연구)

  • Kim, Tae-Kyun
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02b
    • /
    • pp.252-257
    • /
    • 2006
  • 기본적으로 모든 소비자들은 조금씩 다르며, 제품은 그 차이를 극대화 시킴으로써 다양한 소비를 촉진하게 된다. 이와 같은 시장 세분화와 포지셔닝 전략은 디자인 경영에 있어 매우 중요한 전략적 단계라 할 수 있으며, 기업의 소비자 분석의 목적이기도 하다. 다차원 척도법은 군집 분석에서와 마찬가지로 자료에 내재된 구조를 찾아내어 자료를 함축적으로 표현하고자 하는 자료축약형 다변량 분석 기법이다. 패턴 분류의 수량화를 이용하는 POSA(Partial Order Scalogram Analysis)는 MSA(Multidimensional Scalogram Analysis)의 구조화된 방법으로 디자인 전략을 수립하는 단계에서 소비자의 성향을 보다 세분화할 수 있다. 본 논문에서는 디자인 리서치 단계에 POSA 방법론을 적용하였을 때 소비자 유형 분류가 가능하다고 보고, 창의적 디자인 컨셉의 도출에 어느 정도 역할을 하는지 알아보고자 함을 목적으로 하였다. 본 연구에서는 부분적 계층 분석법인 POSA 분석방법을 통하여 사용자의 계층을 세분화하는 방법을 고안하고, 이를 분석함으로써 소비자의 유형을 분류하여 디자인 포지셔닝과 방향을 제시하는 방법론을 제안하고자 하였다. 이를 위하여 설문조사를 통하여 POSA 기법을 이용한 소비자 유형 분류 방법이 고안되었고, 이를 기반으로 모바일 기기를 위한 프로젝트에 실제 디자인 사례로 적용되었으며, 이러한 소비자 유형 분석을 통하여 타겟 유저의 시나리오 작성 단계에서 창의적 발상을 지원한다는 점을 발견할 수 있었다.

  • PDF

A Design of Hierarchical Gaussian ARTMAP using Different Metric Generation for Each Level (계층별 메트릭 생성을 이용한 계층적 Gaussian ARTMAP의 설계)

  • Choi, Tea-Hun;Lim, Sung-Kil;Lee, Hyon-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.633-641
    • /
    • 2009
  • In this paper, we proposed a new pattern classifier which can be incrementally learned, be added new class in learning time, and handle with analog data. Proposed pattern classifier has hierarchical structure and the classification rate is improved by using different metric for each levels. Proposed model is based on the Gaussian ARTMAP which is an artificial neural network model for the pattern classification. We hierarchically constructed the Gaussian ARTMAP and proposed the Principal Component Emphasis(P.C.E) method to be learned different features in each levels. And we defined new metric based on the P.C.E. P.C.E is a method that discards dimensions whose variation are small, that represents common attributes in the class. And remains dimensions whose variation are large. In the learning process, if input pattern is misclassified, P.C.E are performed and the modified pattern is learned in sub network. Experimental results indicate that Hierarchical Gaussian ARTMAP yield better classification result than the other pattern recognition algorithms on variable data set including real applicable problem.

Document Clustering Methods using Hierarchy of Document Contents (문서 내용의 계층화를 이용한 문서 비교 방법)

  • Hwang, Myung-Gwon;Bae, Yong-Geun;Kim, Pan-Koo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2335-2342
    • /
    • 2006
  • The current web is accumulating abundant information. In particular, text based documents are a type used very easily and frequently by human. So, numerous researches are progressed to retrieve the text documents using many methods, such as probability, statistics, vector similarity, Bayesian, and so on. These researches however, could not consider both subject and semantic of documents. So, to overcome the previous problems, we propose the document similarity method for semantic retrieval of document users want. This is the core method of document clustering. This method firstly, expresses a hierarchy semantically of document content ut gives the important hierarchy domain of document to weight. With this, we could measure the similarity between documents using both the domain weight and concepts coincidence in the domain hierarchies.

An Object Image Classification Using Hierarchical Neural Network (계층적 신경망을 이용한 객체 영상 분류)

  • Kim, Jong-Ho;Lee, Jae-Won;Kim, Sang-Kyoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.281-284
    • /
    • 2003
  • 본 연구는 웨이블릿 변환을 통하여 객체 영상에서 질감 특징 값을 추출하고, 신경망을 계층적으로 구성하여 분류하는 방법을 제안한다. 기존의 신경망을 이용한 영상의 분류는 단일 신경망을 이용하는 것이 대부분이었다. 하지만 단일 신경망은 분류하고자 하는 클래스의 수가 많거나 분류하고자 하는 대상이 유사한 입력패턴을 가질 경우 학습시간이 오래 걸리고, 인식률이 크게 떨어지는 문제를 가지고 있다. 그래서 본 연구에서는 효과적인 객체 영상 분류를 위해서 여러 개의 단일 신경망을 계층적으로 결합하는 방법을 제안한다. 실험결과 분류 대상 클래스가 증가함에도 불구하고 단일 신경망에 비해 학습시간이 단축되고, 높은 인식률을 보여주었다.

  • PDF