Communications for Statistical Applications and Methods
/
제5권2호
/
pp.431-437
/
1998
본 논문의 목적은 계층적 베이즈 일반화 선형모형을 이용하여 경시적 자료를 분석하는 것이다. 구체적으로 계층적 베이즈 변량효과 모형을 소개하고 무정보적 사전분포 하에서 사후분포가 진(proper)인지에 대한 충분조건을 찾는다 또한, 깁스(Gibbs) 표본자를 사용하여 제안된 계층적 베이즈 절차의 수행에 관해 논의한다. 현실자료를 사용하여 제안된 계층적 베이즈 분석을 예시하고, 이에 대응하는 경험적 베이즈 분석과 비교한다.
양쪽중단(doubly censored)된 지수분포에서 모수와 신뢰도함수를 계층적 베이지안(hierarchical Bayesian)방법을 이용하여 추정하였다. 베이즈 계산은 깁스표본기법(Gibbs sampler)을 이용하고 또한 완전조건부 분포(full conditional distribution)의 정량화 상수를 모르는 경우에는 적합기각방법(adaptive rejection sampling)을 이용하였다. 그리고 실제자료를 이용하여 분석을 하였다.
신뢰할 만한 소지역 통계 작성을 위한 다양한 소지역 추정 기법들이 최근 많은 관심속에 개발되고 있다. 이 논문은 다양한 소지역 추정 기법들 중 일부 기법들에 대한 간략한 소개 및 실례를 제시한다. 먼저 대표적인 소지역에 대한 간접추정법인 인구통계학적 방법, 합성추정법과 복합추정법에 관한 이론 및 추정절차를 살펴보았고, 모형 기반 추정법으로써 경험적 베이즈(EB) 추정법과 계층적 베이즈(HB) 추정법을 소개하였다. 마지막으로 합성추정법과 복합추정법을 이용하여 충북의 시군구 실업자 추정에 적용해 보았고, 시군구 실업자 추정결과를 직접 추정법의 결과와 비교하였다.
Rao와 Yu(1994)는 소지역 추정(small area estimation) 문제를 해결하기 위한 방법으로 추정 시점과 인접지역 정보 등 보조정보와 과걱의 표본조사 결과를 모두 이용하는 모형과 그 모형으로 부터 경험적최량선형비편향추정량(Empirical Best Unbiased Predictor)을 제안하였다. 본 논문에서는 Rao와 Yu의 모형에서 미지의 모수에 대한 사전확률분포를 가정한 계층적 베이즈 추정량을 제안하고, 이를 미국의 주별 4인가족 소득추정문제에 적용하여 그 효율을 미국의 Census Bureau에서 사용하고 있는 경험적 베이즈추정량 및 이전에 제안된 다른 추정량들과 비교하였다.
Communications for Statistical Applications and Methods
/
제4권2호
/
pp.333-343
/
1997
선형회귀분석에서 변수의 선택문제는 최적의 모형을 찾는데 아주 중요한 부분을 차지한다. George와 McCulloch(1993)는 계층적 베이즈 모형과 깁스표본법을 이용하여 선형회귀모형에서 변수를 선택하는 문제를 고려하였다. 이 논문에서는 George와 McCulloch의 모형을 바탕으로 각각의 설명변수가 모형에 포함될 사전확률을 객관적인 기준에 의하여 결정하는 문제를 고려하여 보았다.
본 논문에서는 영 과잉 계수형 자료 분석을 위한 모형중의 하나인 영 과잉 포아송 모형의 베이지안 접근 방법에 대해서 연구한다. 구체적으로는 베이지안 영 과잉 포아송 모형의 적합을 위한 사후 표본을 추출하는데 있어서, 깁스 표집기(Gibbs sampler)를 이용하는 마르코프 연쇄 몬테칼로(MCMC) 방법과 역 베이즈공식(IBF)에 의한 표본추출 방법 두 가지를 고려한다. 이러한 두 가지 사후 표본 추출방법을 비교 설명하고, IBF를 통한 사후표본을 깁스 표집기 사후표본의 수렴성 여부를 확인하는 방식에 대해서도 소개한다. 이를 바탕으로 베이지안 영 과잉 포아송 모형을 Trajan이라는 사과 품종의 발아자료(Trajan data, Marin 등, 1993)에 적용하고 모수에 대한 사후추론을 실시하고 기존의 결과와 비교한다. 또한 주어진 자료에 대하여 영 과잉 포아송 모형이 적합한지에 대한 여부를 여러 가지 모형선택 기준을 통해서 살펴보고, 아울러 기존의 자료 분석 결과 (Rodrigues, 2003)를 보완하기 위하여 계층적 베이지안 모형과 같은 대안에 대해서도 논의해본다.
국내외에서 소지역 추정에 관한 많은 연구가 진행되고 있다. 보조 자료가 충분히 있는 경우 모형기반 추정법을 사용하는 것이 일반적이며 이 중에서 계층적 베이지안(Hierarchical Bayesian: HB) 추정법이 가장 좋은 것으로 알려져 있다. 그러나 보조 자료가 충분하지 않은 경우에는 모형 기반 추정법의 사용은 제한적이다. 최근 충분한 보조 자료가 없는 경우 공간 정보를 보조 자료로 사용하는 방법이 제안되었다. 본 논문에서는 공간통계량과 베이즈 접근방법을 활용한 모형기반의 소지역 통계량들을 모형 검진방법(Diagnostic method)들을 이용하여 비교 분석하였다. 분석에 사용된 자료는 2005년도 경제활동인구 조사이며 소지역(시,군,구)통계를 추정하여 비교하였다.
Journal of the Korean Data and Information Science Society
/
제20권1호
/
pp.77-87
/
2009
최근 들어 소지역 추정 문제를 해결하는데 베이지안 방법이 주목을 받고 있다. 본 논문에서는 고객집단별 보험금에 대한 실제 자료를 MCMC 기법을 통한 계층적 베이지안 모형과 일원분류, GLM-Normal, GLM-Gamma 모형으로 분석하여 그 결과를 비교하였다. 결론적으로 소지역 추정에 의하여 얻어진 보험금 추정량이 다른 방법으로부터 얻어진 추정량들과 비교하여 가장 합리적이고 좋은 추정량임을 보일 수 있었다. 특히, 표본 수가 적은 집단에 대하여 소지역 추정의 정확성이 현저하게 높음을 알 수 있었다.
지구 온난화 문제와 화석 연료 양의 한계 때문에 재생 가능한 전력 생산에 대한 관심이 증가하고 있다. 특히 재생 에너지 중 태양광 에너지의 전력 생산 비율은 점차 증가함에 따라 집광형 태양광발전 시스템은 높은 전력 생산량으로 각광받고 있다. 하지만 이 시스템은 태양광 중첩률이 높을 때 가장 높은 발전 효율을 내기 때문에 허용 오차 범위가 작은 정밀 태양 추적 시스템이 필요하다. 본 논문에서는 복잡한 환경에 대응할 수 있는 베이지안 네트워크와 나이브 베이즈 분류기를 이용한 계층적 추적 시스템을 제안한다. 베이지안 네트워크는 불완전하고 불확실한 상황을 모델링 하는데 강력한 모델로 충분한 양의 데이터가 없을 경우에도 도메인 지식을 바탕으로 네트워크를 설계할 수 있다는 장점이 있다. 제안하는 계층적 확률 시스템에서는 불확실한 하늘 상황을 9개로 분류하고 모듈형 베이지안 네트워크를 이용하여 현재 날씨 상황을 추론한다. 또한 나이브 베이즈 분류기를 이용하여 추론된 날씨 상황을 고려한 효율적인 추적 방법을 분류하고 선택한다. 베이지안 네트워크의 유용성을 평가하기 위해 실제 날씨 데이터를 수집하였고 평균 93.9%의 정확도(Accuracy)를 보였다. 또한, 제안하는 시스템과 핀홀 카메라 시스템의 태양광발전 효율을 비교한 결과 약 16.58%의 성능이 향상됨을 확인하였다.
Journal of the Korean Data and Information Science Society
/
제23권4호
/
pp.627-641
/
2012
본 연구는 다차원 분할표 형태로 정리된 범주형 자료가 결측치나 무응답을 가지고 있을 때 주어진 자료를 가장 잘 설명하고 예측의 정확도를 높일 수 있는 모형의 추정과 모형의 선택 문제를 다루었다. 무시할 수 없는 무응답 (non-ignorable non-response)체계하에서 최대우도 추정에서 발생할 수 있는 변방값 문제를 해결하기 위하여 계층적 베이지안 모형을 고려하였다. 또한 모형 적도를 높이기 위한 변수 조합을 찾는 모형 선택의 문제를 함께 다루었다. 베이지안 접근하에서 모형 선택의 문제를 다루기 위하여 베이즈 인자 (Bayes factor)를 모형 선택의 기준으로 이용하였다. 제시된 방법은 2004년 실시된 우리나라 국회의원 선거를 앞두고 수행된 여론조사 데이터를 이용하여 실증분석을 수행하였다. 분석결과 무시할 수 없는 무응답 체계하에서 설명변수로 투표참여여부를 이용하는 것이 가장 적합한 모형으로 판명되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.