• Title/Summary/Keyword: 계층적 기계학습

Search Result 50, Processing Time 0.024 seconds

Improving Classification Accuracy in Hierarchical Trees via Greedy Node Expansion

  • Byungjin Lim;Jong Wook Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.113-120
    • /
    • 2024
  • With the advancement of information and communication technology, we can easily generate various forms of data in our daily lives. To efficiently manage such a large amount of data, systematic classification into categories is essential. For effective search and navigation, data is organized into a tree-like hierarchical structure known as a category tree, which is commonly seen in news websites and Wikipedia. As a result, various techniques have been proposed to classify large volumes of documents into the terminal nodes of category trees. However, document classification methods using category trees face a problem: as the height of the tree increases, the number of terminal nodes multiplies exponentially, which increases the probability of misclassification and ultimately leads to a reduction in classification accuracy. Therefore, in this paper, we propose a new node expansion-based classification algorithm that satisfies the classification accuracy required by the application, while enabling detailed categorization. The proposed method uses a greedy approach to prioritize the expansion of nodes with high classification accuracy, thereby maximizing the overall classification accuracy of the category tree. Experimental results on real data show that the proposed technique provides improved performance over naive methods.

Structure and expression of legal principles for artificial intelligence lawyers (인공지능 변호사를 위한 법리의 구조화와 그 표현)

  • Park, Bongcheol
    • Journal of the International Relations & Interdisciplinary Education
    • /
    • v.1 no.1
    • /
    • pp.61-79
    • /
    • 2021
  • In order to implement an artificial intelligence lawyer, this study looked at how to structure legal principles, and then gave specific examples of how structured legal principles can be expressed in predicate logic. While previous studies suggested a method of introducing predicate logic for the reasoning engine of artificial intelligence lawyers, this study focused on the method of expressing legal principles with predicate logic based on the structural appearance of legal principles. Jurisprudence was limited to the content of articles and precedents, and the vertical hierarchy leading to 'law facts - legal requirements - legal effect' and the horizontal hierarchy leading to 'legal effect - defense - defense' were examined. In addition, legal facts were classified and explained that most of the legal facts can be usually expressed in unary or binary predicates. In future research, we plan to program the legal principle expressed in predicate logic and realize an inference engine for artificial intelligence lawyers.

Ensemble Model using Multiple Profiles for Analytical Classification of Threat Intelligence (보안 인텔리전트 유형 분류를 위한 다중 프로파일링 앙상블 모델)

  • Kim, Young Soo
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.3
    • /
    • pp.231-237
    • /
    • 2017
  • Threat intelligences collected from cyber incident sharing system and security events collected from Security Information & Event Management system are analyzed and coped with expanding malicious code rapidly with the advent of big data. Analytical classification of the threat intelligence in cyber incidents requires various features of cyber observable. Therefore it is necessary to improve classification accuracy of the similarity by using multi-profile which is classified as the same features of cyber observables. We propose a multi-profile ensemble model performed similarity analysis on cyber incident of threat intelligence based on both attack types and cyber observables that can enhance the accuracy of the classification. We see a potential improvement of the cyber incident analysis system, which enhance the accuracy of the classification. Implementation of our suggested technique in a computer network offers the ability to classify and detect similar cyber incident of those not detected by other mechanisms.

Imbalanced Data Improvement Techniques Based on SMOTE and Light GBM (SMOTE와 Light GBM 기반의 불균형 데이터 개선 기법)

  • Young-Jin, Han;In-Whee, Joe
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.12
    • /
    • pp.445-452
    • /
    • 2022
  • Class distribution of unbalanced data is an important part of the digital world and is a significant part of cybersecurity. Abnormal activity of unbalanced data should be found and problems solved. Although a system capable of tracking patterns in all transactions is needed, machine learning with disproportionate data, which typically has abnormal patterns, can ignore and degrade performance for minority layers, and predictive models can be inaccurately biased. In this paper, we predict target variables and improve accuracy by combining estimates using Synthetic Minority Oversampling Technique (SMOTE) and Light GBM algorithms as an approach to address unbalanced datasets. Experimental results were compared with logistic regression, decision tree, KNN, Random Forest, and XGBoost algorithms. The performance was similar in accuracy and reproduction rate, but in precision, two algorithms performed at Random Forest 80.76% and Light GBM 97.16%, and in F1-score, Random Forest 84.67% and Light GBM 91.96%. As a result of this experiment, it was confirmed that Light GBM's performance was similar without deviation or improved by up to 16% compared to five algorithms.

Semantic Aspects of Negation as Schema (부정 스키마의 의미론적 양상)

  • Tae, Kang-Soo
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.23-28
    • /
    • 2002
  • A fundamental problem in building an intelligent agent is that an agent does not understand the meaning of its perception or its action. One reason that an agent cannot understand the world is partially caused by a syntactic approach that converts a semantic feature into a simple string. To solve this problem, Cohen introduces a semantic approach that an agent autonomously learns a meaningful representation of physical schemas, on which some advanced conceptual structures are built, from physically interacting with environment using its own sensors and effectors. However, Cohen does not deal with a meta level of conceptual primitive that makes recognizing a schema possible. We propose that negation is a meta schema that enables an agent to recognize a physical schema. We prove some semantic aspects of negation.

Detection of Frame Deletion Using Convolutional Neural Network (CNN 기반 동영상의 프레임 삭제 검출 기법)

  • Hong, Jin Hyung;Yang, Yoonmo;Oh, Byung Tae
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.886-895
    • /
    • 2018
  • In this paper, we introduce a technique to detect the video forgery by using the regularity that occurs in the video compression process. The proposed method uses the hierarchical regularity lost by the video double compression and the frame deletion. In order to extract such irregularities, the depth information of CU and TU, which are basic units of HEVC, is used. For improving performance, we make a depth map of CU and TU using local information, and then create input data by grouping them in GoP units. We made a decision whether or not the video is double-compressed and forged by using a general three-dimensional convolutional neural network. Experimental results show that it is more effective to detect whether or not the video is forged compared with the results using the existing machine learning algorithm.

Research about feature selection that use heuristic function (휴리스틱 함수를 이용한 feature selection에 관한 연구)

  • Hong, Seok-Mi;Jung, Kyung-Sook;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.281-286
    • /
    • 2003
  • A large number of features are collected for problem solving in real life, but to utilize ail the features collected would be difficult. It is not so easy to collect of correct data about all features. In case it takes advantage of all collected data to learn, complicated learning model is created and good performance result can't get. Also exist interrelationships or hierarchical relations among the features. We can reduce feature's number analyzing relation among the features using heuristic knowledge or statistical method. Heuristic technique refers to learning through repetitive trial and errors and experience. Experts can approach to relevant problem domain through opinion collection process by experience. These properties can be utilized to reduce the number of feature used in learning. Experts generate a new feature (highly abstract) using raw data. This paper describes machine learning model that reduce the number of features used in learning using heuristic function and use abstracted feature by neural network's input value. We have applied this model to the win/lose prediction in pro-baseball games. The result shows the model mixing two techniques not only reduces the complexity of the neural network model but also significantly improves the classification accuracy than when neural network and heuristic model are used separately.

A Checklist to Improve the Fairness in AI Financial Service: Focused on the AI-based Credit Scoring Service (인공지능 기반 금융서비스의 공정성 확보를 위한 체크리스트 제안: 인공지능 기반 개인신용평가를 중심으로)

  • Kim, HaYeong;Heo, JeongYun;Kwon, Hochang
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.259-278
    • /
    • 2022
  • With the spread of Artificial Intelligence (AI), various AI-based services are expanding in the financial sector such as service recommendation, automated customer response, fraud detection system(FDS), credit scoring services, etc. At the same time, problems related to reliability and unexpected social controversy are also occurring due to the nature of data-based machine learning. The need Based on this background, this study aimed to contribute to improving trust in AI-based financial services by proposing a checklist to secure fairness in AI-based credit scoring services which directly affects consumers' financial life. Among the key elements of trustworthy AI like transparency, safety, accountability, and fairness, fairness was selected as the subject of the study so that everyone could enjoy the benefits of automated algorithms from the perspective of inclusive finance without social discrimination. We divided the entire fairness related operation process into three areas like data, algorithms, and user areas through literature research. For each area, we constructed four detailed considerations for evaluation resulting in 12 checklists. The relative importance and priority of the categories were evaluated through the analytic hierarchy process (AHP). We use three different groups: financial field workers, artificial intelligence field workers, and general users which represent entire financial stakeholders. According to the importance of each stakeholder, three groups were classified and analyzed, and from a practical perspective, specific checks such as feasibility verification for using learning data and non-financial information and monitoring new inflow data were identified. Moreover, financial consumers in general were found to be highly considerate of the accuracy of result analysis and bias checks. We expect this result could contribute to the design and operation of fair AI-based financial services.

Performance Improvement of Optical Character Recognition for Parts Book Using Pre-processing of Modified VGG Model (변형 VGG 모델의 전처리를 이용한 부품도면 문자 인식 성능 개선)

  • Shin, Hee-Ran;Lee, Sang-Hyeop;Park, Jang-Sik;Song, Jong-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.433-438
    • /
    • 2019
  • This paper proposes a method of improving deep learning based numbers and characters recognition performance on parts of drawing through image preprocessing. The proposed character recognition system consists of image preprocessing and 7 layer deep learning model. Mathematical morphological filtering is used as preprocessing to remove the lines and shapes which causes false recognition of numbers and characters on parts drawing. Further.. Further, the used deep learning model is a 7 layer deep learning model instead of VGG-16 model. As a result of the proposed OCR method, the recognition rate of characters is 92.57% and the precision is 92.82%.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.