• Title/Summary/Keyword: 계측

Search Result 9,145, Processing Time 0.034 seconds

Effects of Starvation and Delayed Feeding on Growth and Survival of Pacific Cod Gadus macrocephalus Larvae (대구, Gadus macrocephalus, 자어의 첫 섭식 시 기아와 늦은 먹이 공급이 성장과 생존에 미치는 영향)

  • Shin, Min-Gyu;Lee, So-Gwang;Jeon, Hae-Ryeon;Joo, Jae-Hyeong;Gwak, Woo-Seok
    • Korean Journal of Ichthyology
    • /
    • v.31 no.1
    • /
    • pp.7-15
    • /
    • 2019
  • The present study aimed to investigate the influence of starvation on growth, survival and swimming ability of Pacific cod Gadus macrocephalus larvae. Notochord length, musculature height, body depth, gut height and volume of yolk of reared larvae were measured to determine the growth parameters. A significant difference was observed in all morphometric characteristics before 15 DAH (days after hatching). Body depth and volume of yolk of unfed larvae were significantly smaller than those of fed larvae from 9 DAH (P<0.05). Almost all yolk in fed group was consumed at 11 DAH. Survival and growth of larvae were observed to determine the effect of delayed initial feeding (2 DAH, 3 DAH, 4 DAH, unfed). All larvae in the unfed group died by 15 DAH and the larvae in other experimental groups survived until the end of the experiment to 21 DAH. Survival rate was not significantly different between the 2 DAH group ($17.5{\pm}4.27%$) and the 3 DAH group ($20.5{\pm}1.5%$) at 21 DAH (P>0.05). However, there was a significant difference in survival rate between the 3 DAH group and the 4 DAH group ($11.7{\pm}1.52%$) (P<0.05). There was no significant difference in notochord length among the groups fed from 2 DAH, 3 DAH and 4 DAH at 21 DAH (P>0.05). The swimming ability in fed group gradually increased in both cruising and burst swimming speeds, while those abilities in unfed group gradually decreased after reaching the peak at 6 DAH in both cruise ($18.7{\pm}6.56mm/s$) and burst swimming speed ($43.5{\pm}12.65mm/s$).

Comparison of Crown Shape and Amount of Tooth Reduction for Primary Anterior Prefabricated Crowns (유전치 기성 크라운의 형태 및 치질 삭제량 비교)

  • Kim, Soyoung;Lim, Youjin;Lee, Sangho;Lee, Nanyoung;Jih, Myeongkwan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.1
    • /
    • pp.64-75
    • /
    • 2019
  • The purpose of this study was to obtain instructions for size selection of prefabricated crown and tooth reduction by 3-dimensional analysis of the size and shape of the maxillary primary central and lateral incisors and prefabricated crowns (celluloid strip, resin veneered stainless steel, and zirconia crowns). The maxillary primary central and lateral incisors of 300 Korean children was scanned with three types of prefabricated crown to create standard three-dimensional tooth models and prefabricated crowns. The shapes of the prefabricated crowns and natural teeth were compared according to four parameters (mesio-distal width, height, labio-palatal width, and labial surface curvature coefficient) and calculated the amount of tooth reduction required for each prefabricated crown. The size 2 resin veneered stainless steel crown, size 1 zirconia crown, and size 2 celluloid strip crown were most similar in shape to the primary central incisor. The size 3 rein veneered stainless steel crown, size 2 zirconia crown, and size 3 celluloid strip crown were most similar to the primary lateral incisor. The amount of tooth reduction was similar in both maxillary primary central and lateral incisors. The incisal reduction was greatest for the zirconia crown. At the proximal surface, the zirconia and celluloid strip crowns required a similar amount of tooth reduction, but more than the resin veneered stainless steel crown. The labial surface reduction was greatest for the zirconia crown. The degree of lingual surface reduction was not significant among the three prefabricated crowns. Among the assessment parameters, mesio-distal crown width was the most important for choosing a prefabricated crown closest to the actual size of the natural crown.

A Study for establishment of soil moisture station in mountain terrain (1): the representative analysis of soil moisture for construction of Cosmic-ray verification system (산악 지형에서의 토양수분 관측소 구축을 위한 연구(1): Cosmic-ray 검증시스템 구축을 위한 토양수분량 대표성 분석 연구)

  • Kim, Kiyoung;Jung, Sungwon;Lee, Yeongil
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.51-60
    • /
    • 2019
  • The major purpose of this study is to construct an in-situ soil moisture verification network employing Frequency Domain Reflectometry (FDR) sensors for Cosmic-ray soil moisture observation system operation as well as long-term field-scale soil moisture monitoring. The test bed of Cosmic-ray and FDR verification network system was established at the Sulma Catchment, in connection with the existing instrumentations for integrated data provision of various hydrologic variables. This test bed includes one Cosmic-ray Neutron Probe (CRNP) and ten FDR stations with four different measurement depths (10 cm, 20 cm, 30 cm, and 40 cm) at each station, and has been operating since July 2018. Furthermore, to assess the reliability of the in-situ verification network, the volumetric water content data measured by FDR sensors were compared to those calculated through the core sampling method. The evaluation results of FDR sensors- measured soil moisture against sampling method during the study period indicated a reasonable agreement, with average values of $bias=-0.03m^3/m^3$ and RMSE $0.03m^3/m^3$, revealing that this FDR network is adequate to provide long-term reliable field-scale soil moisture monitoring at Sulmacheon basin. In addition, soil moisture time series observed at all FDR stations during the study period generally respond well to the rainfall events; and at some locations, the characteristics of rainfall water intercepted by canopy were also identified. The Temporal Stability Analysis (TSA) was performed for all FDR stations located within the CRNP footprint at each measurement depth to determine the representative locations for field-average soil moisture at different soil profiles of the verification network. The TSA results showed that superior performances were obtained at FDR 5 for 10 cm depth, FDR 8 for 20 cm depth, FDR2 for 30 cm depth, and FDR1 for 40 cm depth, respectively; demonstrating that those aforementioned stations can be regarded as temporal stable locations to represent field mean soil moisture measurements at their corresponding measurement depths. Although the limit on study duration has been presented, the analysis results of this study can provide useful knowledge on soil moisture variability and stability at the test bed, as well as supporting the utilization of the Cosmic-ray observation system for long-term field-scale soil moisture monitoring.

Energy Saving Effect for High Bed Strawberry Using a Crown Heating System (고설 딸기 관부 난방시스템의 에너지 절감 효과)

  • Moon, Jong Pil;Park, Seok Ho;Kwon, Jin Kyung;Kang, Youn Koo;Lee, Jae Han;Kim, Hyung Gweon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.420-428
    • /
    • 2019
  • This study is the heating energy saving test of the high-bed strawberry crown heating system. The system consists of electric hot water boiler, thermal storage tank, circulation pump, crown heating pipe(white low density polyethylene, diameter 16mm) and a temperature control panel. For crown heating, the hot water pipe was installed as close as possible to the crown part after planting the seedlings and the pipe position was fixed with a horticultural fixing pin. In the local heating type, hot water at $20{\sim}23^{\circ}C$ is stored in the themal tank by using an electric hot water boiler, and crown spot is partially heated at the setting temperature of $13{\sim}15^{\circ}C$ by turning on/off the circulation pump using a temperature sensor for controlling the hot water circulation pump which was installed at the very close to crown of strawberry. The treatment of test zone consisted of space heating $4^{\circ}C$ + crown heating(treatment 1), space heating $8^{\circ}C$(control), space heating $6^{\circ}C$ + crown heating(treatment 2). And strawberries were planted in the number of 980 for each treatment. The heating energy consumption was compared between November 8, 2017 and March 30, 2018. Accumulated power consumption is converted to integrated kerosene consumption. The converted kerosene consumption is 1,320L(100%) for space $8^{\circ}C$ heating, 928L(70.3%) for space $4^{\circ}C$ + crown heating, 1,161L($88^{\circ}C$) for space $6^{\circ}C$ + crown heating). It was analyzed that space $4^{\circ}C$ + pipe heating and space $6^{\circ}C$ + crown heating save heating energy of 29.7% and 12% respectively compared to $8^{\circ}C$ space heating(control).

External Tibial Torsion with Proximal Tibia Vara in Total Knee Arthroplasty of Advanced Osteoarthritis with Severe Varus Deformed Knees (심한 내반 변형의 진행성 관절염 환자의 인공 슬관절 전치환술 시 경골 근위부의 내반을 동반한 외회전 변형)

  • Sun, Doo-Hoon;Song, In-Soo;Kim, Jun-Beom;Kim, Cheol-U;Jung, Deukhee;Jeong, Uitak
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.1
    • /
    • pp.62-70
    • /
    • 2020
  • Purpose: External tibia torsion and proximal tibial vara have been reported in severe varus deformed osteoarthritis, which is a tibio-femoral angle of more than 20°. The radiology measurements were compared with those of control group and the preoperative and follow-up radiology and clinical results were examined. Materials and Methods: From January 2007 to March 2016, 43 knees from 37 persons, who underwent total knee arthroplasty for a severe varus deformity of more than 20° on the tibio-femoral angle on the standing radiographs and had a follow-up period more than two years, were examined. The mean follow-up period was 45.7 months. The control group, who underwent conservative treatments, had Kellgren-Lawrence grade three osteoarthritis and a tibio-femoral angle of less than 3° varus. The external tibial torsion of enrolled patients and control group were estimated using the proximal tibio-fibular overlap length and the tibial torsion values on computed tomography. The proximal tibia vara was measured using the proximal tibial tilt angle. The preoperative and postoperative proximal tibio-fibular overlap length, tibial torsion value, proximal tibial tilt angle, and hospital for special surgery (HSS) score were evaluated. Results: The mean proximal tibio-fibular overlap length was 18.6 mm preoperatively and 11.2 mm (p=0.031) at the follow-up. The control group had a mean proximal tibio-fibular overlap length of 8.7 mm (p=0.024). The mean tibial torsion value was 13.8° preoperatively and 14.0° (p=0.489) at the follow-up. The control group had a mean tibial torsion value of 21.9° (p=0.012). The mean proximal tibial tilt angle was 12.2° preoperatively and 0° (p<0.01) at the follow-up. The control group had a mean proximal tilt angle of 1.2° (p<0.01). The preoperative tibiofemoral angle and mechanical axis deviation were corrected from preoperative 28.3° and medial 68.4 mm to postoperative 0.7° and medial 3.5 mm (p<0.01, p<0.01), respectively. The HSS scores increased from 34 points of preoperatively to 87 points at the last follow-up (p=0.028). Conclusion: Patients with advanced osteoarthritis with a severe varus deformity of more than 20° had significant increases in the external tibial torsion and varus of the proximal tibia. The tibial torsion value before and after surgery in the enrolled patients was not changed statistically, but good clinical results without complications were obtained.

Diagnosis and Treatment of Brown Tumor (Brown 종양의 진단 및 치료)

  • Cho, Yong Jin;Cho, Yung Min;Na, Seung Min;Jung, Sung-Taek
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.1
    • /
    • pp.54-61
    • /
    • 2020
  • Purpose: Brown tumor is a tumor-like disease that can occur as a linked disease of hyperparathyroidism which can causes osteoporosis, osteitis fibrosa cystica, pathologic fractures. Brown tumor has been reported as a case report, but there is no comprehensive report on the exact diagnosis and principle of management for osseous lesion. The purpose of this study is to report the treatment and results of osseous lesions through 5 cases. Materials and Methods: From February 2004 to May 2015, five cases of Brown tumor were diagnosed in Chosun University Hospital and Chonnam National University Hospital orthopedic department. Medical records and radiographs were reviewed retrospectively. Parathyroid tumors were surgically removed, and surgical treatment and observation were performed for orthopedic osseous lesions. Results: The mean length of the long axis of the symptomatic osseous lesion was 6.2 cm (4.5-9.0 cm). An average of 7.6 (range, 3 to 14) of high uptake osseous lesion showed in whole body bone scan. The absolute value, T-score and Z-score of the vertebrae and proximal femur were adequate for diagnosis of osteoporosis using dual energy X-ray absorptiometry bone mineral density at diagnosis and recovered to normal at the last follow-up. In laboratory tests, serum concentrations of total calcium, ionized calcium, inorganic phosphorus, serum alkaline phosphatase, and parathyroid hormone were helpful to diagnosis and normalized upon successful removal of parathyroid adenoma or cancer. Conclusion: For accurate diagnosis of Brown tumor, it should be accompanied by systemic examination as well as clinical symptoms, laboratory tests and radiologic examination for osseous lesions. And a good prognosis can be expected if the hyperparathyroidism is treated together with the comprehensive treatment of osseous lesions.

A study on the derivation and evaluation of flow duration curve (FDC) using deep learning with a long short-term memory (LSTM) networks and soil water assessment tool (SWAT) (LSTM Networks 딥러닝 기법과 SWAT을 이용한 유량지속곡선 도출 및 평가)

  • Choi, Jung-Ryel;An, Sung-Wook;Choi, Jin-Young;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1107-1118
    • /
    • 2021
  • Climate change brought on by global warming increased the frequency of flood and drought on the Korean Peninsula, along with the casualties and physical damage resulting therefrom. Preparation and response to these water disasters requires national-level planning for water resource management. In addition, watershed-level management of water resources requires flow duration curves (FDC) derived from continuous data based on long-term observations. Traditionally, in water resource studies, physical rainfall-runoff models are widely used to generate duration curves. However, a number of recent studies explored the use of data-based deep learning techniques for runoff prediction. Physical models produce hydraulically and hydrologically reliable results. However, these models require a high level of understanding and may also take longer to operate. On the other hand, data-based deep-learning techniques offer the benefit if less input data requirement and shorter operation time. However, the relationship between input and output data is processed in a black box, making it impossible to consider hydraulic and hydrological characteristics. This study chose one from each category. For the physical model, this study calculated long-term data without missing data using parameter calibration of the Soil Water Assessment Tool (SWAT), a physical model tested for its applicability in Korea and other countries. The data was used as training data for the Long Short-Term Memory (LSTM) data-based deep learning technique. An anlysis of the time-series data fond that, during the calibration period (2017-18), the Nash-Sutcliffe Efficiency (NSE) and the determinanation coefficient for fit comparison were high at 0.04 and 0.03, respectively, indicating that the SWAT results are superior to the LSTM results. In addition, the annual time-series data from the models were sorted in the descending order, and the resulting flow duration curves were compared with the duration curves based on the observed flow, and the NSE for the SWAT and the LSTM models were 0.95 and 0.91, respectively, and the determination coefficients were 0.96 and 0.92, respectively. The findings indicate that both models yield good performance. Even though the LSTM requires improved simulation accuracy in the low flow sections, the LSTM appears to be widely applicable to calculating flow duration curves for large basins that require longer time for model development and operation due to vast data input, and non-measured basins with insufficient input data.

Estimating design floods based on bivariate rainfall frequency analysis and rainfall-runoff model (이변량 강우 빈도분석과 강우-유출 모형에 기반한 설계 홍수량 산정 방안)

  • Kim, Min Ji;Park, Kyung Woon;Kim, Seok-Woo;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.737-748
    • /
    • 2022
  • Due to the lack of flood data, the water engineering practice calculates the design flood using rainfall frequency analysis and rainfall-runoff model. However, the rainfall frequency analysis for arbitrary duration does not reflect the regional characteristics of the duration and amount of storm event. This study proposed a practical method to calculate the design flood in a watershed considering the characteristics of storm event, based on the bivariate rainfall frequency analysis. After extracting independent storm events for the Pyeongchang River basin and the upper Namhangang River basin, we performed the bivariate rainfall frequency analysis to determine the design storm events of various return periods, and calculated the design floods using the HEC-1 model. We compared the design floods based on the bivariate rainfall frequency analysis (DF_BRFA) with those estimated by the flood frequency analysis (DF_FFA), and those estimated by the HEC-1 with the univariate rainfall frequency analysis (DF_URFA). In the case of the Pyeongchang River basin, except for the 100-year flood, the average error of the DF_BRFA was 11.6%, which was the closest to the DF_FFA. In the case of the Namhangang River basin, the average error of the DF_BRFA was about 10%, which was the most similar to the DF_FFA. As the return period increased, the DF_URFA was calculated to be much larger than the DF_FFA, whereas the BRFA produced smaller average error in the design flood than the URFA. When the proposed method is used to calculate design flood in an ungauged watershed, it is expected that the estimated design flood might be close to the actual DF_FFA. Thus, the design of the hydrological structures and water resource plans can be carried out economically and reasonably.

Assessment of the Position of the Mandibular Foramen and Mandibular Lingula in Children and Adolescents using CBCT (소아 청소년에서 하악공 및 하악소설의 위치에 대한 CBCT 분석)

  • Lee, Jihye;Choi, Namki;Kim, Byunggee;Kim, Seonmi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.1
    • /
    • pp.64-76
    • /
    • 2021
  • The purpose of this study is to evaluate the position of the mandibular foramen and location and morphological characteristics of the mandibular lingula using Cone-Beam Computed Tomography (CBCT). Mandibular CBCT images of children aged 6 - 16 years were collected. A total of 180 patients were divided into 3 groups, 6 - 7, 10 - 11 and 15 - 16 years, with 30 male and female patients per group. Either side of the ramus was analyzed. The shortest distances from the anterior, posterior, superior and inferior border of the ramus to the mandibular lingula were measured. The shortest distance between the mandibular lingula and the mandibular foramen was also measured. The vertical distance from the mandibular lingula and the mandibular foramen to the occlusal plane was measured. The shapes of the mandibular lingula was classified into 4 types according to the criteria. The distances of the mandibular lingula from the anteroposterior and vertical reference points of the ramus increased in all directions with age. The distance between the mandibular lingula and the mandibular foramen also increased with age. The location of the mandibular lingula and the mandibular foramen in relation to the occlusal plane moved upwards with age. The most common shape of the mandibular lingula was triangular, followed by nodular, truncated and assimilated, and there was no difference in the shape according to age. It is recommended that the horizontal insertion point of the anesthesia from the anterior border of the ramus increased to 17 mm, 18 mm, and 19 mm according to the age groups. It is also suggested that the vertical insertion point increased by 2 - 3 mm, 5 - 6 mm and 9 - 10 mm above the occlusal plane according to the age groups.

Analysis of the effect of long-term water supply improvement by the installation of sand dams in water scarce areas (물부족 지역에서 샌드댐 설치에 의한 장기 물공급 개선 효과 분석)

  • Chung, Il-Moon;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.999-1009
    • /
    • 2022
  • The Chuncheon Mullori area is an underprivileged area for water welfare that does not have a local water supply system. Here, water is supplied to the village by using a small-scale water supply facility that uses underground water and underground water as the source. To solve the problem of water shortage during drought and to prepare for the increasing water demand, a sand dam was installed near the valley river, and this facility has been operating since May 2022. In this study, in order to evaluate the reliability of water supply when a sand dam is assumed during a drought in the past, groundwater runoff simulation results using MODFLOW were used to generate inflow data from 2011 to 2020, an unmeasured period. After performing SWAT-K basin hydrologic modeling for the watershed upstream of the existing water intake source and the sand dam, the groundwater runoff was calculated, and the relative ratio of the monthly groundwater runoff for the previous 10 years to the monthly groundwater runoff in 2021 was obtained. By applying this ratio to the 2021 inflow time series data, historical inflow data from 2011 to 2020 were generated. As a result of analyzing the availability of water supply during extreme drought in the past for three cases of demand 20 m3/day, 50 m3/day, and 100 m3/day, it can be confirmed that the reliability of water supply increases with the installation of sand dams. In the case of 100 m3/day, it was analyzed that the reliability exceeded 90% only when the existing water intake source and the sand dam were operated in conjunction. All three operating conditions were evaluated to satisfy 50 m3/day or more of demand based on 95% reliability of water supply and 30 m3/day or more of demand based on 99% of reliability.