• 제목/요약/키워드: 계절예측정보

검색결과 153건 처리시간 0.023초

남부지방의 일기예보구역 설정에 관한 연구 (Defining Homogeneous Weather Forecasting Regions in Southern Parts of Korea)

  • 김일곤;박현욱
    • 대한지리학회지
    • /
    • 제31권3호
    • /
    • pp.469-488
    • /
    • 1996
  • 한국은 아시아대륙의 북동쪽에 위치한 반도로서 삼면이 바다로 둘러싸인 독특한 주위지형을 이루고 있고, 산맥 등의 산악효과와, 반도의 속성인 바다-육지의 열용량 차이 및 종관규모의 대기운동의 영향 등을 받는다. 따라서, 반도의 대기흐름 양상은 지역차가 현저하므로 정확한 일기예보 및 일기예보 구역설정이 매우 어렵다. 그러나 각 지역의 일기대표성은 매월의 일기엔트로피와 情報此(information ratio) 개념을 기초로 하면 수리적, 지리적 요인 및 계절변화 등을 포함한 보다 恒常的인 모습으로 밝힐 수 있다. 이것은 각 지역이 갖는 일기엔트로피란 어느 기간중 매일 완전한 일기예측이 그 지역에 부여될 때의 일일 평균정보량이고 일기의 불확정성의 測度로서 일기일수의 치우친 비율을 나타내므로 결국 일기엔트로피 값의 대소는 일기출현의 특성을 잘 나태낸다. 그러므로 날씨 및 기후는 일기출현율과 그 월변화의 특성을 잘 반영하고 있다고 할 수 있다. 따라서 본 논문은 남부지방의 날씨 및 기후특성을 명확히 반영하고 잇는 탁월일기의 출현 다소와 월변화에 대해 정보이론을 이용하여 일기엔트로피와 情報此를 수량적으로 추출하고 그 공간스케일의 시간적 변동을 살펴 대표지점으로서 부산, 대구, 광주, 군산 지역의 일기대표성을 밝히고 그에 따라 남부지방의 일기예보구역을 설정한 것이다.

  • PDF

사회연결망 분석을 활용한 연관규칙 확장기법 (Extension Method of Association Rules Using Social Network Analysis)

  • 이동원
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.111-126
    • /
    • 2017
  • 연관 상품 추천은 수많은 상품을 다루는 온라인 상거래에서 소비자의 상품 탐색 시간을 줄여주며 판매자의 매출 증대에 크게 기여한다. 이는 주문과 같은 거래의 빈도를 기반으로 생성되므로, 통계적으로 판매 확률이 높은 상품을 효과적으로 선별할 수 있다. 하지만, 판매 가능성이 높은 경우라도 신상품처럼 판매 초기에 거래 건수가 충분하지 않은 상품은 추천에서 누락될 수 있다. 연관 추천에서 누락된 상품은 이로 인해 노출 기회를 잃게 되고, 이는 거래 건수 감소로 이어져, 또 다시 추천 기회를 잃는 악순환을 겪을 수도 한다. 따라서, 충분한 거래 건수가 쌓이기 전까지 초기 매출은 일정 기간 동안 정체되는 현상을 보이는데, 의류 등과 같이 유행에 민감하거나 계절 변화에 영향을 많이 받는 상품은 이로 인해 매출에 큰 타격을 입을 수도 있다. 본 연구는 이와 같이 거래 초기의 낮은 거래 빈도로 인해 잘 드러나지 않는 상품 간의 잠재적인 연관성을 찾아 추천 기회를 확보할 수 있도록 연관 규칙을 확장하기 위한 목적으로 수행되었다. 두 상품 간에 직접적인 연관성이 나타나지 않더라도 다른 상품을 매개로 두 상품 간의 잠재적 연관성을 예측할 수 있을 것이며, 이런 연관성은 주문에서 나타나는 상품 간 상호작용으로 표현될 수 있으므로, 사회연결망 분석을 활용한 분석을 시도하였다. 사회연결망 분석기법을 통해 각 상품의 속성과 두 상품 간 경로의 특성을 추출하고 회귀분석을 실시하여, 두 상품 간 경로의 최단 거리 및 경로의 개수, 각 상품이 얼마나 많은 상품과 연관성을 갖는지, 두 상품의 분류 카테고리가 어느 정도 일치하는지가 두 상품 간의 잠재적 연관성에 미친다는 것을 확인하였다. 모형의 성능을 평가하기 위해, 일정 기간의 주문 데이터로부터 연결망을 구성하고, 이후 10일 간 생성될 상품 간 연관성을 예측하는 실험을 진행하였다. 실험 결과는 모형을 적용하지 않는 경우보다 제안 모형을 활용할 때 훨씬 많은 연관성을 찾을 수 있음을 보여준다.

위성 자료와 수치모델 자료를 활용한 스태킹 앙상블 기반 SO2 지상농도 추정 (Monitoring Ground-level SO2 Concentrations Based on a Stacking Ensemble Approach Using Satellite Data and Numerical Models)

  • 최현영;강유진;임정호;신민소;박서희;김상민
    • 대한원격탐사학회지
    • /
    • 제36권5_3호
    • /
    • pp.1053-1066
    • /
    • 2020
  • 이산화황(SO2)은 대기 중 화학 반응을 통해 2차 대기오염물질을 생성하는 전구체로, 주로 산업활동이나 주거 및 교통 활동 등을 통해 배출된다. 장기간 노출 시 호흡기 질환이나 심혈관 질환 등을 유발하여 인체 건강에 부정적인 영향을 미칠 수 있기 때문에 이에 대한 지속적인 모니터링이 필요하다. 우리나라에서는 SO2에 대해 관측소 기반의 모니터링이 수행되고 있으나 이는 공간적으로 연속적인 정보를 제공하는 데에 한계가 있다. 따라서, 본 연구에서는 위성자료와 수치모델 자료를 융합하여 일별 13시를 타겟으로 하는 1 km의 고해상도로 공간적으로 연속적인 SO2 지상농도를 산출하였다. 2015년 1월부터 2019년 4월까지의 기간 동안 남한 지역에 대하여 스태킹 앙상블 기법을 이용하여 SO2 지상농도 추정 모델을 개발하였다. 스태킹 앙상블 기법이란 여러가지 기계학습 기법을 두 단계로 쌓는 방식으로 융합하여 단일 모델 대비 더 향상된 성능을 도출하는 방법이다. 본 연구에서는 베이스 모델로는 RF (Random Forest)와 XGB (eXtreme Gradient BOOSTing) 기법이, 메타 모델로는 MLR (Multiple Linear Regression) 기법이 사용되었다. 구축된 모델의 교차검증 결과 메타 모델은 상관계수(R) = 0.69와 root-mean-squared-error(RMSE) = 0.0032 ppm의 결과를 보였으며 이는 베이스 모델의 평균 대비 약 25% 향상된 안정성을 보였다. 또한 모델 구축에 사용되지 않은 기간에 대한 예측 검증을 수행하여 모델의 일반화 가능성을 평가하였다. 구축된 모델을 이용하여 남한 지역의 SO2 지상농도 공간분포를 분석한 결과 일반적인 계절성과 배출원의 변화를 잘 반영하는 패턴을 보임을 확인하였다.