본 연구는 GIS를 통해 토양정보를 수집하고 가공하여 농산물 생산량을 예측하는 모델을 제안한다. 농산물 생산량 예측 딥러닝 알고리즘은 공개된 CNN-RNN 농산물 생산량 예측 모델 구조를 변경하여 국내 농산물 자료 환경에 적합하도록 새롭게 구축하였다. 기존모델은 두 가지 특징을 가지고 있는데 첫 번째는 농산물의 생산량을 해당 필지값이 아닌 당해 평균값으로 대체한다는 것이고 두 번째는 예측하는 연도의 데이터까지 학습한다는 것이다. 새로운 모델은 해당 필지의 값을 그대로 사용하여 데이터의 정확성을 확보하고 예측하고자 하는 연도 이전의 데이터만 가지고 학습할 수 있도록 네트워크 구조를 개선하였다. 제안한 CNN-RNN 모델은 1980년부터 2020년까지의 기상정보, 토양정보, 토양적성도, 생산량 데이터를 학습하여 김장용 가을배추의 지역별 단위면적당 생산량을 예측한다. 2018년부터 2021년까지 4개 연도별 자료에 대하여 계산하고 생산량을 예측한 결과, 테스트 데이터셋에 대한 오차백분율이 약 10% 내외로 실제값과 비교하여 정확도 높은 생산량 예측이 가능했고, 특히 전체 생산량 비중이 큰 지역에서의 생산량은 비교적 근접하게 예측하는 것으로 분석되었다. 또한 제안모델과 기존모델은 모두 학습자료 연도 수가 증가할수록 점점 오차가 작아지므로 학습데이터가 많아질수록 범용 성능은 향상되는 결과를 나타낸다.
본 연구의 목적은 마우스 사용 시 손목터널증후군을 예방할 수 있는 스마트장갑을 연구하는 것이다. 연구에 앞서 손목의 좌·우 움직임은 미세하므로 게이지율(Gauge Factor)이 크고, 이력현상(Hysteresis)이 적은 인장 직물 센서가 필요하다. 만능재료시험기(UTM)를 통해 4가지의 직물을 분석하여 각각의 게이지율을 계산하고, 이력현상도 가장 적은 직물을 선택하였다. 또한, 3가지 부착방법을 아두이노로 분석하여 센서값 변화(△Sensor Value) 값이 큰 방법을 선택하였다. 선택된 직물과 부착방법으로 제작한 프로토타입을 아두이노를 통해 데이터 패턴을 분석하였다. 첫 번째는 센서 1개(A 센서)로만 파악하는 방법이고, 두 번째로는 센서 2개(A, B 센서)로 파악하는 방법이다. 손목 왼쪽(A 센서), 손목 오른쪽(B 센서) 양쪽에 인장 직물 센서를 부착하고, 손목을 오른쪽으로 꺾을 때 A 센서는 늘어나서 △Sensor Value 값이 커지고, B 센서는 줄어들어서 △Sensor Value가 작아진다. 반면에 손목을 왼쪽으로 꺾을 때는 반대로 패턴이 분석되었다. 본 연구를 통해 손목이 꺾일 시 LED가 켜지는 알고리즘으로 손목터널증후군을 예방하는 스마트장갑을 연구하였고, 본 연구 결과를 기반으로 후속 연구에서는 10명을 대상으로 직접 마우스를 사용하면서 실제 사용 시 문제점을 파악하고 파악된 문제점을 해결하고자 한다.
최근 지중저장기술(예, 온실가스 심지층 처분, 인공지열저류층 발전 등)이 활발히 수행됨에 따라, 유체 주입과 저장부지 안정성 사이의 역학적 관계에 관한 정량적 이해의 중요성이 인지되고 있다. 지중 유체 주입은 공극압 및 지중응력 교란과 지층의 역학적 불안정성을 야기할 수 있어, 유체 주입에 대한 다공탄성 수치 모형 구축이 요구된다. 본 연구에서는 순차적인 COMSOL-PyLith-COMSOL 유체 주입-유발지진 다공탄성 수치 모사를 수행한다. 유한요소 상용 소프트웨어인 COMSOL을 이용해 단층에 가해지는 쿨롱 파괴 응력(CFS) 변화를 시간에 따라 추적하였고, CFS 변화량이 임계값(예, 0.1 MPa)을 초과할 경우, 모형의 정보(기하구조, 물성 등)를 유한요소 오픈소스 코드인 PyLith로 이동시키는 알고리즘을 구축했다. PyLith는 단층의 미끄러짐을 모사하고, 미끌림에 의한 변위장을 획득한다. 이후 변위장을 COMSOL로 이동시켜 지진에 의한 응력 및 표면 변위를 계산한다. 수치 모사 결과, 주입 기간 중엔 주입정 근거리에서 큰 변화(공극압, CFS 변화 등)를 보였고, 주입 종류 후에는 잔류 응력이 원거리 영역으로 확산하는 양상이 나타났다. 이는 주입 종료 후 지속적인 모니터링의 필요성을 제안한다. 또한, 단층과 주입층 물성(예, 투수계수, Biot-Willis 계수)에 따른 CFS 변화량 비교는 주입정 위치 선정 시 주입층 및 주변 지층에 대한 물성 파악이 중요함을 의미한다. 단층 미끄러짐 양에 따른 표면 변위 및 이암층에 가해지는 편차응력은 다양한 단층 미끌림 시나리오 설정의 필요성을 지시한다.
본 논문에서는 의료 영상 분석 분야에서 이용되고 있는 AI(Artificial Intelligence)기술을 문헌 검토를 통해 분석하였다. 문헌 검색은 중심어(keyword)를 사용하여 PubMed, ResearchGate, Google 및 Cochrane Review의 문헌 검색을 수행했다. 문헌 검색을 통해 114개의 초록을 검색하였고 그 중 16개의 중복된 것을 제외하고 98개의 초록을 검토했다. 검토된 문헌에서 AI가 응용되고 있는 분야는 분류(Classification), 국소화(Localization), 질병의 탐지(Detection), 질병의 분할(Segmentation), 합성 영상의 적합도(Fit degree) 등으로 나타났다. 기계학습(ML: Machine Learning)을 위한 모델은 특징 추출을 한 후 신경망의 네트워크에 특징 값을 입력하는 방식은 지양되는 것으로 나타났다. 그 대신에 신경망의 은닉층을 여러 개로 하는 심층학습(DL: Deep Learning) 방식으로 변화되고 있는 것으로 나타났다. 그 이유는 컴퓨터의 메모리 량의 증가와 계산속도의 향상, 빅 데이터의 구축 등으로 특징 추출을 DL 과정에서 처리하는 것으로 사료된다. AI를 이용한 의료영상의 분석을 의료에 적용하기 위해서는 의사의 역할이 중요하다. 의사는 AI 알고리즘의 예측을 해석하고 분석할 수 있어야 한다. 이러한 이해를 위해서는 현재 의사를 위한 추가 의학 교육 및 전문성 개발과 의대에 재학 중인 학습자를 위한 개정된 커리큘럼이 필요해 보인다.
본 논문에서는 복합재료의 섬유와 기지사이의 경계면 손상을 고려한 멀티스케일 점진적 피로 손상 모델을 제안한다. 먼저 점진적인 경계면 손상을 고려하기 위해 서로 다른 4개의 경계면 상태를 정의한 미소구조 모델을 도입하였다. 각각의 상태에 대한 부피분율은 피로 하중의 사이클 수가 증가함에 따라 온전한 상태의 계면에서 완전 박리 상태의 계면으로의 전환이 일어난다. 손상된 경계면의 에쉘비 텐서(Eshelby's tensor)를 계산하기 위해 선형 스프링 모델이 사용되었으며 균질화 방법을 통해 복합재료의 유효 물성을 얻었다. 또한 복합재료의 피로거동을 묘사하기 위해 교번 응력에 대한 섬유, 기지, 그리고 섬유-기지 간의 계면 각각에 대한 손상 변수들이 정의되었고 이를 chaotic firefly 알고리즘을 통해 손상 변수를 특성화 하였다. 제안된 모델은 유한요소해석프로그램 ABAQUS의 UMAT subroutine으로 구현되어 AS4/3501-6 복합재료의 단일방향 라미네이트(unidirectional laminate) 시편들([0]8, [90]8,[30]16)을 통해 성공적으로 검증되었다.
이 연구의 목적은 소아의 치근단 방사선 사진에서 인접면 우식증 객체 탐지 의 객체 탐지를 위해 YOLO (You Only Look Once)를 사용한 모델의 성능을 평가하는 것이다. M6 데이터베이스에서 학습자료군으로 2016개의 치근단 방사선 사진이 선택되었고 이 중 1143개는 한 명의 숙련된 치과의사가 주석 도구를 사용하여 인접면 우식증을 표시하였다. 표시한 주석을 데이터 세트로 변환한 후 단일 합성곱 신경망(CNN) 모델을 기반으로 하는 YOLO를 데이터 세트에 학습시켰다. 187개의 평가자료군에서 객체 탐지 모델 성능 평가를 위해 정확도, 재현율, 특이도, 정밀도, NPV, F1-score, PR 곡선 및 AP를 계산하였다. 결과로 정확도 0.95, 재현율 0.94, 특이도 0.97, 정밀도 0.82, NPV 0.96, F1-score 0.81, AP 0.83으로 인접면 우식증 탐지에 좋은 성능을 보였다. 이 모델은 치과의사에게 치근단 방사선 사진에서 인접면 우식증 병변을 객체 탐지하는 도구로 유용하게 사용될 수 있다.
본 논문은 무인수상정의 자율운항을 위한 장애물 탐지 및 회피기동을 위해 3차원 라이다를 사용하였다. 단일센서만을 사용해서 해상조건에서의 무인수상정 장애물 회피운항을 하는데 목적이 있다. 3차원 라이다는 Quanergy사의 M8센서를 사용하여 주변 환경 장애물 데이터를 (r, , )로 수집하며 장애물 정보에는 Layer 정보와 Intensity 정보를 포함한다. 수집된 데이터를 3차원 직각좌표계로 변환을 하고, 이를 2차원 좌표계로 사상한다. 2차원 좌표계로 변환한 장애물 정보를 포함하는 데이터는 수면위의 잡음데이터를 포함하고 있다. 그래서 기본적으로 무인수상정을 기준으로 가상의 관심영역을 정의하여서 규칙적으로 생성되는 잡음데이터에 대해서 삭제를 하였으며, 그 이후에 발생하는 잡음데이터는 Vector Field Histogram으로 계산된 히스토그램 데이터에서 Threshold를 정해 밀도값에 비례하여 잡음데이터를 제거하였다. 제거된 데이터를 이용하여 무인수상정의 움직임에 따른 상대물체를 탐색하여 가상의 격자지도에 1 Cell씩 저정하면서 데이터의 밀도 지도를 작성하였다. 작성된 장애물 지도를 폴라 히스토그램을 생성하고, 경계값을 이용하여 회피방향을 선정하였다.
최근 정전시에 엘리베이터에 탑승한 승객들을 안전하게 대피시킬 수 있는 비상전원장치가 법제화됨에 따라서 이 시스템에 대한 관심이 증대되고 있다. 본 연구에서는 대용량 커패시터에 필요 전력을 직류로 저장한 상태에서 정전시 교류 380V를 발생시켜 엘리베이터가 일정시간 동안 동작할 수 있는 비상전원장치(PCS : Power Conditioning System) 설계에 대한 내용을 다룬다. PCS에 사용되는 전력변환장치의 제어시스템은 원하는 응답 특성을 얻기 위한 전류제어기로 구성되어져 있다. 전류제어기의 설계 방법에는 일반적으로 빠른 응답 특성을 보여주는 데는 비트 제어기 설계를 사용하고 있지만, 복잡한 계산과정을 요구하기 때문에 고성능의 제어기를 필요로 하게 된다. 본 연구에서는 average 전류 제어기법을 사용한 전류제어기의 설계 방법에 대해서 서술하였다. 먼저 단상 시스템의 전류 제어 기법을 통해 제안된 방법의 적합성을 입증한 후 3상 시스템으로 확장시켜서 시스템에 적용하였다. 모델링을 통한 수학적 해석과 PSIM을 이용한 컴퓨터 시뮬레이션을 이용한 검증방법을 통해 본 연구에서 제안한 제어방법의 성능과 효과를 입증하였다.
라그랑주 승수법(Method of Lagrange Multipliers)은 등식 제약조건하에서 미분가능한 함수의 최대, 최소를 구하는 대표적인 방법이다. 선형대수학, 최적화 이론, 제어 이론을 포함하여 최근에는 인공지능 기초수학에서도 널리 활용되고 있다. 특히 라그랑주 승수법은 미분적분학과 선형대수학을 연결하는 중요한 도구이며, 주성분 분석(Principal Component Analysis, PCA)을 포함한 인공지능 알고리즘에 많이 활용되고 있다. 따라서 교수자는 대학 미분적분학에서 처음 라그랑주 승수법을 접하는 학생들에게 구체적인 학습 동기를 제공할 필요가 생겼다. 이에 본 논문에서는 교수자가 학생들에게 라그랑주 승수법을 효과적으로 교육하는데 필요한 통합적인 시야를 제공한다. 먼저 다양한 전공의 학생들이 계산에 대한 부담을 덜고 원리를 쉽게 이해할 수 있도록 개발한 시각화 자료 및 파이썬(Python) 기반의 SageMath 코드를 제공한다. 또한 라그랑주 승수법으로 행렬의 고윳값과 고유벡터를 유도하는 과정을 상세히 소개한다. 그리고 라그랑주 승수법을 간단한 경우에 대한 증명에서 시작하여 일반화된 최적화 문제로 확장하고, 수업에서 학생들이 라그랑주 승수와 PCA를 활용하여 실제 데이터를 분석한 결과를 추가하였다. 본 연구는 대학수학을 지도하는 다양한 전공의 교수자들에게 도움이 될 기초자료가 될 것이다.
안전성 관련 구조물인 원자력 격납건물은 시간의 흐름에 따라 콘크리트와 텐던의 물리적 성질 변화로 구조거동의 미세한 변화를 가져오기 때문에 주기적 점검을 통한 구조건전성 검증이 필요하다. 본 연구에서는 국내 부착식 텐던 격납건물인 CANDU형의 월성 원전을 대상으로 미세 구조거동 분석이 가능한 'SAPONC-CANDU' 프로그램을 개발하였으며, 이는 온도와 시간종속성 영향인자들 즉, 크리프, 건조수축, 텐던의 인장력 하에서 격납건물 콘크리트 속에 매립되어 있는 진동식 와이어 변형률 게이지의 변형률 변화량에 대한 예측값을 계산하는 알고리즘에 기초한다. 개발된 프로그램의 구동을 위해서 변형률 게이지의 계측값이 입력데이타로 사용되고 최종적으로 각각의 변형률 게이지에 대해서 변형률 변화량의 예측값, 예측선, 예측폭이 그래프 형태로 제공되기 때문에 국내 원자력발전소 CANDU형 격납건물의 구조건전성을 평가하는 현장 관리자가 이를 손쉽게 활용할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.