• Title/Summary/Keyword: 계산시간 비교

Search Result 2,452, Processing Time 0.039 seconds

Effect of Co-culture with Bovine and Porcine Oviductal Epithelial Cells on In Vitro Development of Mouse Embryos (마우스 수정란의 체외발달에 미치는 소와 돼지의 난관상피세포와의 공배양 효과)

  • Lee, S.;Hur, E.J.;Seok, H.B.
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.2
    • /
    • pp.139-146
    • /
    • 1997
  • This experiment was carried out to evaluate the effect of mouse early embryonic development in vitro by co-culture with bovine and porcine oviductal epithelial cells(BOEC and POEC). The 2-cell embryos were collected from the oviducts of the superovulated and mated does with D-PBS/15% FCS at 48 hours after hCG injection. The in vitro developmental rate of blastocyst formation and the number of nuclei in the embryos were examined. For a comparative study of in vi패 and in vitro development, the fresh blastocyst which developed in vivo for 120 hours after hCG injection was collected from the uterus, and their numbers of nuclei were also counted. The higher developmental rates of blastocyst formation was a, pp.ared from 91% to 97% when the embryos were co-cultured with a monolayer of bovine or porcine oviductal epithelial cells in TCM 199 or Ham's F-10 and MediCult IVF media. No significant difference in developmental rates was shown between bovine and porcine oviductal eptithelial cells. The number of nuclei in the embryos cultured for 72 hours under each conditions was significantly reduced it than blastocyst in vitro conditions. The number of nuclei in embryos cultured in TCM 199, Ham's F-10 and Medicult IVF medium were counted 68.1$\pm$6.00, 67.3$\pm$4.49, 66.4$\pm$5.64, and 94.3$\pm$8.61, 92.5$\pm$7.60, 92.1$\pm$6.10 with BOEC and 93.3$\pm$5.80, 92.9$\pm$6.53, 92.3$\pm$7.35 with POEC coculture, respectively. These numbers were lowered than 107.2$\pm$7.43 in vivo conditions. In conclusions, the coculture between the mouse early embryos, and oviductal epithelial cells of BOEC and POEC give to improve the developmental and hatching rates of blastocyst but in vivo culture systems for the growth of nuclei were ineligible than in vitro conditions.

  • PDF

Monitoring of Atmospheric Aerosol using GMS-5 Satellite Remote Sensing Data (GMS-5 인공위성 원격탐사 자료를 이용한 대기 에어러솔 모니터링)

  • Lee, Kwon Ho;Kim, Jeong Eun;Kim, Young Jun;Suh, Aesuk;Ahn, Myung Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.1-15
    • /
    • 2002
  • Atmospheric aerosols interact with sunlight and affect the global radiation balance that can cause climate change through direct and indirect radiative forcing. Because of the spatial and temporal uncertainty of aerosols in atmosphere, aerosol characteristics are not considered through GCMs (General Circulation Model). Therefor it is important physical and optical characteristics should be evaluated to assess climate change and radiative effect by atmospheric aerosols. In this study GMS-5 satellite data and surface measurement data were analyzed using a radiative transfer model for the Yellow Sand event of April 7~8, 2000 in order to investigate the atmospheric radiative effects of Yellow Sand aerosols, MODTRAN3 simulation results enable to inform the relation between satellite channel albedo and aerosol optical thickness(AOT). From this relation AOT was retreived from GMS-5 visible channel. The variance observations of satellite images enable remote sensing of the Yellow Sand particles. Back trajectory analysis was performed to track the air mass from the Gobi desert passing through Korean peninsular with high AOT value measured by ground based measurement. The comparison GMS-5 AOT to ground measured RSR aerosol optical depth(AOD) show that for Yellow Sand aerosols, the albedo measured over ocean surfaces can be used to obtain the aerosol optical thickness using appropriate aerosol model within an error of about 10%. In addition, LIDAR network measurements and backward trajectory model showed characteristics and appearance of Yellow Sand during Yellow Sand events. These data will be good supporting for monitoring of Yellow Sand aerosols.

  • PDF

Clinical Usefulness of Ambulatory Blood Pressure Monitoring in Children and Adolescents (소아 및 청소년에서 24시간 활동 혈압 측정의 임상적 유용성)

  • Hwang, Young-Ju;Park, Hyo-Jung;Yang, Eun-Ae;Cho, Min-Hyun;Ko, Cheol-Woo;Yang, Dong-Heon;Hwang, Hyun-Hee
    • Childhood Kidney Diseases
    • /
    • v.15 no.2
    • /
    • pp.154-162
    • /
    • 2011
  • Purpose: With increasing prevalence of hypertension (HTN) in children and adolescent, pediatricians have become more interested in blood pressure (BP) measurements. The ambulatory blood pressure monitoring (ABPM) is known to be useful to differentiate true HTN and white coat HTN. The object of this study is to assess the clinical usefulness of ABPM in Korean children and adolescents. Methods: A retrospective review of 51 patients in Kyungpook National University Hospital from January 2002 to February 2010 was done. All patients were 6-18 years old and underwent ABPM. We calculated the mean value of ABP, BP load, nocturnal dip and compared the results with the patients' diagnosis and characteristics. Results: The mean age of the 51 patients was $17.8{\pm}1.8$ years and 19 children were obese. 37 patients (72.5%) were truly hypertensive and 1 patient was diagnosed as masked HTN and 7 children (14%) as white coat HTN. The rest of the patients were normotensive. Among patients with white coat HTN, 5 were in a prehypertensive state. Mean systolic and diastolic BP load of patients with true HTN were significantly higher than non-hypertensive children (P<0.001). Although the nocturnal dip of all patients were below 10%, there was no statistical significance. The obese patients showed higher systolic and diastolic BP. Their systolic and diastolic BP load were significantly higher than non-obese patients (P<0.001). Conclusion: ABPM in children and adolescents seems to be a valuable tool in the assessment of white coat HTN and in the confirmation of true HTN. A considerable number of white coat HTN patients are revealed to be in a prehypertensive state and need close follow-up.

2DEG Transport Analysis in AlGaAs/GaAs Interface by MONTE-CARLO Method (MONTE-CARLO 방법에 의한 AlGaAs/GaAs 계면의 전자 전달특성 분석)

  • Nam, Seung-Hun;Jung, Hak-Ki;Kim, Bong-Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.2
    • /
    • pp.94-101
    • /
    • 1989
  • Transport properties of 2DEG at AlGaAs/GaAs interface such as average electron energy, flight distance, each valley occupancy ratio, average electron velocity for various fields are investigated by MONTE-CARLO method. As the electric field increases, more electrons transit drastically from (000) valley to (000) upper valley. This phenomenon shows the nonstationary effect such as velocity overshoot. The duration of the transient decreases from about 1.4 psec for electric field E = 7KV/cm to about 0.7 psec for 12KV/cm. The average electron velocity during transient transport in 2DEG is about 8 times the steady-state velocity for E = 12KV/cm at room temperature. In comparison with bulk GaAs the peak velocity in the 2DEG is higher than that in even pure bulk GaAs at electric field E = 7 KV/cm. On the basis of the fact that the electrons in the 2DEG have larger peak velocity and shorter transient time of velocity than those in the bulk GaAs, it is suggested that the device with 2DEG may obtain higher mobility than that with bulk GaAs.

  • PDF

Design of a Bit-Serial Divider in GF(2$^{m}$ ) for Elliptic Curve Cryptosystem (타원곡선 암호시스템을 위한 GF(2$^{m}$ )상의 비트-시리얼 나눗셈기 설계)

  • 김창훈;홍춘표;김남식;권순학
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.12C
    • /
    • pp.1288-1298
    • /
    • 2002
  • To implement elliptic curve cryptosystem in GF(2$\^$m/) at high speed, a fast divider is required. Although bit-parallel architecture is well suited for high speed division operations, elliptic curve cryptosystem requires large m(at least 163) to support a sufficient security. In other words, since the bit-parallel architecture has an area complexity of 0(m$\^$m/), it is not suited for this application. In this paper, we propose a new serial-in serial-out systolic array for computing division operations in GF(2$\^$m/) using the standard basis representation. Based on a modified version of tile binary extended greatest common divisor algorithm, we obtain a new data dependence graph and design an efficient bit-serial systolic divider. The proposed divider has 0(m) time complexity and 0(m) area complexity. If input data come in continuously, the proposed divider can produce division results at a rate of one per m clock cycles, after an initial delay of 5m-2 cycles. Analysis shows that the proposed divider provides a significant reduction in both chip area and computational delay time compared to previously proposed systolic dividers with the same I/O format. Since the proposed divider can perform division operations at high speed with the reduced chip area, it is well suited for division circuit of elliptic curve cryptosystem. Furthermore, since the proposed architecture does not restrict the choice of irreducible polynomial, and has a unidirectional data flow and regularity, it provides a high flexibility and scalability with respect to the field size m.

Obturation efficiency of non-standardized gutta-percha cone in curved root canals prepared with 0.06 taper nickel-titanium instruments (0.06-경사도의 니켈-티타늄 기구로 형성된 레진 만곡근관에서 비표준화 GUTTA-PERCHA CONE의 근관충전 효율)

  • Lee, Eun-Ah;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.2
    • /
    • pp.79-85
    • /
    • 2005
  • The purpose of this study was to evaluate the obturation efficiency of a non-standardized gutta-percha cone in curved root canals prepared with 0.06 taper nickel-titanium instruments. Sixty simulated curved root canals in clear resin blocks were prepared with crown-down technique using 0.06 taper rotary $ProTaper^{TM}$and ProFile (Dentsply-Maillefer) until apical canal was size 30. Root canals were randomly divided into 4 groups of 15 blocks and obturated with cold-laterally compacted gutta-percha technique by using either a non-standardized size medium gutta-percha cone or an ISO-standardized size 30 one as a master cone. Gutta-percha area ratio were calculated at apical levels of 1, 3 and 5 mm using AutoCAD 2000 after cross-sectioning, and the data were analyzed with one-way and two-way ANOVAs and Duncan's multiple range test. Non-standardized size medium cone groups showed significantly higher gutta-percha area ratio than standardized cone groups at all apical levels (p < 0.01). Non-standardized cone groups used significantly less accessory cones than standardized cone groups (p < 0.01).

GIS based Development of Module and Algorithm for Automatic Catchment Delineation Using Korean Reach File (GIS 기반의 하천망분석도 집수구역 자동 분할을 위한 알고리듬 및 모듈 개발)

  • PARK, Yong-Gil;KIM, Kye-Hyun;YOO, Jae-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.126-138
    • /
    • 2017
  • Recently, the national interest in environment is increasing and for dealing with water environment-related issues swiftly and accurately, the demand to facilitate the analysis of water environment data using a GIS is growing. To meet such growing demands, a spatial network data-based stream network analysis map(Korean Reach File; KRF) supporting spatial analysis of water environment data was developed and is being provided. However, there is a difficulty in delineating catchment areas, which are the basis of supplying spatial data including relevant information frequently required by the users such as establishing remediation measures against water pollution accidents. Therefore, in this study, the development of a computer program was made. The development process included steps such as designing a delineation method, and developing an algorithm and modules. DEM(Digital Elevation Model) and FDR(Flow Direction) were used as the major data to automatically delineate catchment areas. The algorithm for the delineation of catchment areas was developed through three stages; catchment area grid extraction, boundary point extraction, and boundary line division. Also, an add-in catchment area delineation module, based on ArcGIS from ESRI, was developed in the consideration of productivity and utility of the program. Using the developed program, the catchment areas were delineated and they were compared to the catchment areas currently used by the government. The results showed that the catchment areas were delineated efficiently using the digital elevation data. Especially, in the regions with clear topographical slopes, they were delineated accurately and swiftly. Although in some regions with flat fields of paddles and downtowns or well-organized drainage facilities, the catchment areas were not segmented accurately, the program definitely reduce the processing time to delineate existing catchment areas. In the future, more efforts should be made to enhance current algorithm to facilitate the use of the higher precision of digital elevation data, and furthermore reducing the calculation time for processing large data volume.

Introduction of GOCI-II Atmospheric Correction Algorithm and Its Initial Validations (GOCI-II 대기보정 알고리즘의 소개 및 초기단계 검증 결과)

  • Ahn, Jae-Hyun;Kim, Kwang-Seok;Lee, Eun-Kyung;Bae, Su-Jung;Lee, Kyeong-Sang;Moon, Jeong-Eon;Han, Tai-Hyun;Park, Young-Je
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1259-1268
    • /
    • 2021
  • The 2nd Geostationary Ocean Color Imager (GOCI-II) is the successor to the Geostationary Ocean Color Imager (GOCI), which employs one near-ultraviolet wavelength (380 nm) and eight visible wavelengths(412, 443, 490, 510, 555, 620, 660, 680 nm) and three near-infrared wavelengths(709, 745, 865 nm) to observe the marine environment in Northeast Asia, including the Korean Peninsula. However, the multispectral radiance image observed at satellite altitude includes both the water-leaving radiance and the atmospheric path radiance. Therefore, the atmospheric correction process to estimate the water-leaving radiance without the path radiance is essential for analyzing the ocean environment. This manuscript describes the GOCI-II standard atmospheric correction algorithm and its initial phase validation. The GOCI-II atmospheric correction method is theoretically based on the previous GOCI atmospheric correction, then partially improved for turbid water with the GOCI-II's two additional bands, i.e., 620 and 709 nm. The match-up showed an acceptable result, with the mean absolute percentage errors are fall within 5% in blue bands. It is supposed that part of the deviation over case-II waters arose from a lack of near-infrared vicarious calibration. We expect the GOCI-II atmospheric correction algorithm to be improved and updated regularly to the GOCI-II data processing system through continuous calibration and validation activities.

Non-astronomical Tides and Monthly Mean Sea Level Variations due to Differing Hydrographic Conditions and Atmospheric Pressure along the Korean Coast from 1999 to 2017 (한국 연안에서 1999년부터 2017년까지 해수물성과 대기압 변화에 따른 계절 비천문조와 월평균 해수면 변화)

  • BYUN, DO-SEONG;CHOI, BYOUNG-JU;KIM, HYOWON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.1
    • /
    • pp.11-36
    • /
    • 2021
  • The solar annual (Sa) and semiannual (Ssa) tides account for much of the non-uniform annual and seasonal variability observed in sea levels. These non-equilibrium tides depend on atmospheric variations, forced by changes in the Sun's distance and declination, as well as on hydrographic conditions. Here we employ tidal harmonic analyses to calculate Sa and Ssa harmonic constants for 21 Korean coastal tidal stations (TS), operated by the Korea Hydrographic and Oceanographic Agency. We used 19 year-long (1999 to 2017) 1 hr-interval sea level records from each site, and used two conventional harmonic analysis (HA) programs (Task2K and UTide). The stability of Sa harmonic constants was estimated with respect to starting date and record length of the data, and we examined the spatial distribution of the calculated Sa and Ssa harmonic constants. HA was performed on Incheon TS (ITS) records using 369-day subsets; the first start date was January 1, 1999, the subsequent data subset starting 24 hours later, and so on up until the final start date was December 27, 2017. Variations in the Sa constants produced by the two HA packages had similar magnitudes and start date sensitivity. Results from the two HA packages had a large difference in phase lag (about 78°) but relatively small amplitude (<1 cm) difference. The phase lag difference occurred in large part since Task2K excludes the perihelion astronomical variable. Sensitivity of the ITS Sa constants to data record length (i.e., 1, 2, 3, 5, 9, and 19 years) was also tested to determine the data length needed to yield stable Sa results. HA results revealed that 5 to 9 year sea level records could estimate Sa harmonic constants with relatively small error, while the best results are produced using 19 year-long records. As noted earlier, Sa amplitudes vary with regional hydrographic and atmospheric conditions. Sa amplitudes at the twenty one TS ranged from 15.0 to 18.6 cm, 10.7 to 17.5 cm, and 10.5 to 13.0 cm, along the west coast, south coast including Jejudo, and east coast including Ulleungdo, respectively. Except at Ulleungdo, it was found that the Ssa constituent contributes to produce asymmetric seasonal sea level variation and it delays (hastens) the highest (lowest) sea levels. Comparisons between monthly mean, air-pressure adjusted, and steric sea level variations revealed that year-to-year and asymmetric seasonal variations in sea levels were largely produced by steric sea level variation and inverted barometer effect.

A Simple Method Using a Topography Correction Coefficient for Estimating Daily Distribution of Solar Irradiance in Complex Terrain (지형보정계수를 이용한 복잡지형의 일 적산일사량 분포 추정)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • Accurate solar radiation data are critical to evaluate major physiological responses of plants. For most upland crops and orchard plants growing in complex terrain, however, it is not easy for farmers or agronomists to access solar irradiance data. Here we suggest a simple method using a sun-slope geometry based topographical coefficient to estimate daily solar irradiance on any sloping surfaces from global solar radiation measured at a nearby weather station. An hourly solar irradiance ratio ($W_i$) between sloping and horizontal surface is defined as multiplication of the relative solar intensity($k_i$) and the slope irradiance ratio($r_i$) at an hourly interval. The $k_i$ is the ratio of hourly solar radiation to the 24 hour cumulative radiation on a horizontal surface under clear sky conditions. The $r_i$ is the ratio of clear sky radiation on a given slope to that on a horizontal reference. Daily coefficient for slope correction is simply the sum of $W_i$ on each date. We calculated daily solar irradiance at 8 side slope locations circumventing a cone-shaped parasitic volcano(c.a., 570m diameter for the bottom circle and 90m bottom-to-top height) by multiplying these coefficients to the global solar radiation measured horizontally. Comparison with the measured slope irradiance from April 2007 to March 2008 resulted in the root mean square error(RMSE) of $1.61MJ\;m^{-2}$ for the whole period but the RMSE for April to October(i.e., major cropping season in Korea) was much lower and satisfied the 5% error tolerance for radiation measurement. The RMSE was smallest in October regardless of slope aspect, and the aspect dependent variation of RMSE was greatest in November. Annual variation in RMSE was greatest on north and south facing slopes, followed by southwest, southeast, and northwest slopes in decreasing order. Once the coefficients are prepared, global solar radiation data from nearby stations can be easily converted to the solar irradiance map at landscape scales with the operational reliability in cropping season.