• Title/Summary/Keyword: 계산기하학

Search Result 75, Processing Time 0.022 seconds

Opticla Angle Sensor Using Pseudorandom-code And Geometry-code (슈도 랜덤 코드와 기하학 코드를 이용한 광학적 Angle Sensor)

  • 김희성;도규봉
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.27-32
    • /
    • 2004
  • Absolute optical angle sensor is described that is an essentially digital opto-electronic device. Its purpose is to resolve the relative and absolute angle position of coded disk using Pseudorandom-code and Geometry-code. In this technique, the angular position of disk is determined in coarse sense first by Pseudorandom-code. A further fine angular position data based on Pixel count is obtained by Geometry-code which result 0.006$^{\circ}$ resolution of the system provided that 7 ${\mu}{\textrm}{m}$ line image sensor are used. The proposed technique is novel in a number of aspects, such that it has the non-contact reflective nature, high resolution of the system, relatively simple code pattern, and inherent digital nature of the sensor. And what is more the system can be easily modified to torque sensor by applying two coded disks in a manner that observe the difference in absolute angular displacement. The digital opto-electronic nature of the proposed sensor, along with its reporting of both torque and angle, makes the system ideal for use in intelligent vehicle systems. In this communication, we propose a technique that utilizes Pseudorandom-code and Geometry-code to determine accurate angular position of coded disk. We present the experimental results to demonstrate the validity of the idea.

Edge Grouping and Contour Detection by Delaunary Triangulation (Delaunary 삼각화에 의한 그룹화 및 외형 탐지)

  • Lee, Sang-Hyun;Jung, Byeong-Soo;Jeong, Je-Pyong;Kim, Jung-Rok;Moon, Kyung-li
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.135-142
    • /
    • 2013
  • Contour detection is important for many computer vision applications, such as shape discrimination and object recognition. In many cases, local luminance changes turn out to be stronger in textured areas than on object contours. Therefore, local edge features, which only look at a small neighborhood of each pixel, cannot be reliable indicators of the presence of a contour, and some global analysis is needed. The novelty of this operator is that dilation is limited to Deluanary triangular. An efficient implementation is presented. The grouping algorithm is then embedded in a multi-threshold contour detector. At each threshold level, small groups of edges are removed, and contours are completed by means of a generalized reconstruction from markers. Both qualitative and quantitative comparison with existing approaches prove the superiority of the proposed contour detector in terms of larger amount of suppressed texture and more effective detection of low-contrast contour.

Analysis of Research Trends in SIAM Journal on Applied Mathematics Using Topic Modeling (토픽모델링을 활용한 SIAM Journal on Applied Mathematics의 연구 동향 분석)

  • Kim, Sung-Yeun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.607-615
    • /
    • 2020
  • The purpose of this study was to analyze the research status and trends related to the industrial mathematics based on text mining techniques with a sample of 4910 papers collected in the SIAM Journal on Applied Mathematics from 1970 to 2019. The R program was used to collect titles, abstracts, and key words from the papers and to analyze topic modeling techniques based on LDA algorithm. As a result of the coherence score on the collected papers, 20 topics were determined optimally using the Gibbs sampling methods. The main results were as follows. First, studies on industrial mathematics were conducted in a variety of mathematics fields, including computational mathematics, geometry, mathematical modeling, topology, discrete mathematics, probability and statistics, with a focus on analysis and algebra. Second, 5 hot topics (mathematical biology, nonlinear partial differential equation, discrete mathematics, statistics, topology) and 1 cold topic (probability theory) were found based on time series regression analysis. Third, among the fields that were not reflected in the 2015 revised mathematics curriculum, numeral system, matrix, vector in space, and complex numbers were extracted as the contents to be covered in the high school mathematical curriculum. Finally, this study suggested strategies to activate industrial mathematics in Korea, described the study limitations, and proposed directions for future research.

Isogeometric Shape Design Optimization of Power Flow Problems at High Frequencies (고주파수 파워흐름 문제의 아이소-지오메트릭 형상 최적설계)

  • Yoon, Minho;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.155-162
    • /
    • 2014
  • Using an isogeometric approach, a continuum-based shape design optimization method is developed for steady state power flow problems at high frequencies. In case the isogeometric method is employed to the shape design optimization, the NURBS basis functions used in CAD geometric modeling are directly utilized to embed the exact geometry into the computational framework so that the design parameterization for shape optimization is much easier than that in the finite element method and consequently provides the enhanced smoothness of design perturbations. Thus, exact geometric models can be used in both the response and the shape sensitivity analyses, where normal vector and curvature are continuous over the whole design space so that enhanced shape sensitivity can be expected. Through numerical examples, the developed isogeometric sensitivity is compared with finite difference one to provide excellent agreement. Also, it turns out that the proposed method works very well in the shape optimization problems.

Enhanced Mesh Simplification using Extended Quadric Error Metric (확장된 이차오차 척도를 이용한 개선된 메쉬 간략화)

  • Han Tae-hwa;Chun Jun-chul
    • The KIPS Transactions:PartA
    • /
    • v.11A no.5
    • /
    • pp.365-372
    • /
    • 2004
  • Recently, the studies for mesh simplification have been increased according to the application area of the complicate 3D mesh models has been expanded. This paper introduces a novel method for mesh simplification which uses the properties of the mesh model in addition to the geometric locations of the model. The information of the 3D mesh model Includes surface properties such as color, texture, and curvature information as well as geometic information of the model. The most of current simplification methods adopt such geometric information and surface properties individually for mesh simplification. However, the proposed simplification method combines the geometric information and solace properties and applies them to the simplification process simultaneously. In this paper, we exploit the extended geometry based quadric error metric(QEM) which relatively allows fast and accurate geometric simplification of mesh. Thus, the proposed mesh simplification utilizes the quadric error metric based on geometric information and the surface properties such as color, normal, and texture. The proposed mesh simplification method can be expressed as a simple quadric equation which expands the quadric error metric based on geometric information by adding surface properties such as color, normal, and texture. From the experimental results, the simplification of the mesh model based on the proposed method shows the high fidelity to original model in some respects such as global appearance rather than using current geometry based simplification.