• Title/Summary/Keyword: 계면조건

Search Result 861, Processing Time 0.032 seconds

Studies of the Interface between the High Indium Content InGaAs QW and GaAs Layers (고 indium 농도 InGaAs와 GaAs 박막간 계면에 관한 연구)

  • Kim, Sam-Dong
    • Korean Journal of Materials Research
    • /
    • v.6 no.1
    • /
    • pp.84-89
    • /
    • 1996
  • 분자선 증착법(Molecular Beam Epitaxy)에 의하여 성장시킨 고농도 InGaAs layer에서 성장중지법이 계면 거칠기에 미치는 영향이 연구되었다. 계면을 평활화하기 위하여 단원자층의 GaAs 또는 AIAs를 InGaAs alyer 양쪽 계면에 증착한 뒤 뒤이어 성장중지를 실시하였다. Photoluminescence(PL) 측정에 의하면, 단원자 GaAs층 증착을 통한 평활화법보다 상당히 향상된 계면조건을 보여졌다. 고 분해능 단면 전자현미경법(Cross-section high resolution transmission electron microscopy, XHRTEM)에 의해 관찰되어진바, 계면 평활화법에 의해 계면의 평활성, 연속성 및 결정결함 밀도등에서 현저한 향상이 얻어졌다.

  • PDF

Effects of Interphase Condition and Short-fiber Content on the Fatigue Properties of Reinforced Rubber (계면상 조건과 단섬유 함유량이 강화고무의 피로특성에 미치는 영향)

  • 류상렬;이동주
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.10-17
    • /
    • 2000
  • The fatigue properties of short nylon66 fiber reinforced Chloroprene rubber have been investigated as functions of interphase conditions and fiber content. The spring constant of rubber decreased about 21% after the fatigue test. On the contrary, that of reinforced rubber increased in all cases. The changing rate of spring constant for reinforced rubber decreased with increasing fiber content. This means that the better interphase condition, the smaller changing rate of spring constant. Temperature of matrix increased about 2.5 times and one of reinforced rubber showed 1.7∼2 times up after the test. The changing rate of temperature for reinforced rubber during fatigue test decreased with increasing fiber content. It is found that the better interphase condition, the smaller changing rate of specimen temperature at the same fiber content. Double coatings of bonding agent 402 and rubber solution became the best interphase model in this study. And, we have investigated the possibility of applying short-fiber reinforced rubber to automotive engine mount rubber, bush and stopper.

  • PDF

Cu(In,Ga)Se2/CdS 계면 형성 조건에 따른 Cu(In,Ga)Se2 박막 태양전지의 특성

  • Choe, Hae-Won;Jo, Dae-Hyeong;Jeong, Yong-Deok;Kim, Gyeong-Hyeon;Kim, Je-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.374-374
    • /
    • 2011
  • Cu(In,Ga)Se2 (CIGS) 박막 태양전지는 일반적으로 Soda lime glass/Mo/CIGS/CdS/ZnO/ITO/Al의 구조로 제작된다. 태양전지는 p형과 n형 반도체의 접합에 의해서 동작을 하게 되며, CIGS 박막 태양전지에서는 p형으로 CIGS 박막과 n형으로 CdS 박막이 사용된다. CIGS 박막태양전지에서는 p형과 n형이 서로 다른 물질로 이루어진 이종접합을 이루게 되고, 계면에서의 밴드가 어떻게 형성이 되느냐에 따라 태양전지 성능에 영향을 미치게 된다. p형의 CIGS 박막은 주로 다단계 증발법에 의해 형성되고 3단계 공정조건에 의해 계면의 특성에 많은 영향을 미치게 된다. n형의 CdS 박막은 주로 chemical bath deposition (CBD) 법에 의해 제작된다. 이렇게 제작되는 CBD-CdS는 시약의 농도, pH (수소이온농도), 박막 형성시의 온도 등의 조건에 따라 특성이 변하게 된다. 본 논문에서는 3단계 공정시간을 변화시켜 제작된 CIGS 박막 위에 CBD-CdS 증착 조건 중 thiourea 의 농도를 변화시켜 CIGS 태양전지를 제작하고 그에 따른 특성을 살펴보았다. CIGS 박막은 3단계 공정시간을 490초와 360초로 하여 제작하였고, CdS 박막은 thiourea 농도를 각각 0.025 M과 0.05 M, 0.074 M, 0.1 M로 변화시켜가며 제작하였다. 제작된 CIGS 박막 태양전지는 CIGS 3단계 공정시간과 thiourea의 조건에 따라 최고 15.81%, 최저 14.13%로 나타내었다. 또한, 외부양자효율을 측정하여 제작된 CIGS 박막 태양전지의 파장에 따른 특성을 비교하였다.

  • PDF

The Effect of Acid Treatment on the Adhesion Property of Polyketone with Rubber (폴리케톤과 고무의 접착성에 미치는 산처리의 영향)

  • Choi, Hae Young;Lee, Tae Sang;Lee, Jong;Lee, Seung Goo
    • Journal of Adhesion and Interface
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 2011
  • Phosphoric acid treatments were conducted to improve the adhesion property of polyketone film to rubber. The effects of phosphoric acid treatments were characterized by using a contact angle analyzer and a XPS (X-ray photoelectron spectroscopy). Morphological changes were observed by using a scanning electron microscope (SEM) and an atomic force microscope (AFM) as the acid treatment condition varied in concentration and time. The contact angle was found to significantly decrease with the acid treatment. According to the XPS, increased wettability was attributed to the inclusion of oxygen containing groups such as hydroxyl, carbonyl and carboxyl by acid treatments. Cracks and pores were produced on the polyketone film surface and thus, roughness increased with the acid treatment. Interfacial adhesion strength between polyketone and natural rubber was largely improved by acid treatment due to the increased wettability and roughness of the polyketone surface. However, the higher level of acid treatment caused the degradation of the polyketone surface, and thus, its interfacial adhesion consequently decreased.

Determination of carbaryl in aqueous solution by fluorescence spectrometry (형광분광법을 이용한 수용액 중의 carbaryl의 정량)

  • Kim, Wook Hyun;Lee, Sang Hak
    • Analytical Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.307-312
    • /
    • 2009
  • A spectrofluorimetric methods has been developed for the determination of carbaryl in an aqueous solution. The effects of excitation wavelength, concentration of surfactant, concentration of ethanol as cosurfactant and emission wavelength on the fluorescence intensity were investigated to find the optimum experimental conditions to determine carbaryl. The emission intensity of the carbayl was increased with addition of sodium dodecyl sulfate (SDS) as a surfactant. The emission intensity of the carbaryl was further increased with addition of ethanol as a co-surfactant. The optimum conditions were 281 nm for excitation wavelength, $1.0{\times}10^{-2}mol/L$ SDS, 20% (v/v) ethanol and 349 nm for emission wavelength. Under the optimum conditions, the emission intensity increased with the carbaryl concentration in the range of $5{\times}10^{-7}$ to $1.0{\times}10^{-4}mol/L$ with a detection limit ($3{\sigma}$) of $1.1{\times}10^{-8}mol/L$. The resulting correlation coefficient of the working curve was 0.9996.

Experimental Investigation on the Droplet Entrainment in the Air-Water Horizontal Stratified Flow (물-공기 수평 성층류 유동조건에서 액적이탈 현상에 대한 실험연구)

  • Bae, Byeong Geon;Yun, Byong Jo;Kim, Kyoung Doo;Bae, Byoung Uhn
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.114-122
    • /
    • 2015
  • In the high convective gas flow condition, irregular shaped water waves from which droplet entrainment occurs are generated under horizontally stratified two-phase flow condition. KAERI proposed a new mechanistic droplet entrainment model based on the momentum balance equation consisting of the shear stress, surface tension, and gravity forces. However, this model requires correlation or experimental data of several physical parameters related to the wave characteristics. In the present study, we tried to measure the physical parameters such as wave slope, wave hypotenuse length, wave velocity, wave frequency, and wavelength experimentally. For this, an experiment was conducted in the horizontal rectangular channel of which width, height, and length are, respectively, 40 mm, 50 mm, and 4.2 m. In the present test, the working fluids are chosen as air and water. The PIV technique was applied not only to obtain images for phase interface waves but also to measure the velocity field of the water flow. Additionally, we developed the parallel wire conductance probe for the confirmation of wave height from PIV image. Finally, we measured the physical parameters to be used in the validation of new droplet entrainment model.

Interfacial Properties of Imidazoline Cationic Surfactant (Imidazoline 양이온 계면활성제의 계면 특성)

  • Kim, Ji Sung;Lim, Jong Choo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • In this study, interfacial properties were measured for imidazoline type cationic surfactant system which has been widely used as a fabric softener, a dispersant, an anti-static agent, a bleach activator, and an emulsifier. The CMC of imidazoline surfactant was near $6{\times}10^{-5}mol/L$ and the surface tension at CMC was about 32 mN/m. It was found that surface tension was not affected by surfactant concentration but decreased with an increase in pH. The interfacial tension between 1 wt% aqueous solution and n-dodecane was shown to be about 0.01 mN/m and equilibration time was not affected by pH. Phase behavior experiment in a binary aqueous surfactant system showed that only micellar solution of $L_1$ phase was found under conditions of temperature and pH investigated during this study. Only a two-phase region consisting of lower-phase microemulsion in equilibrium with excess oil phase existed under the same conditions, when oil was added to the binary surfactant system. The foam stability measured with 1 wt% surfactant solution increased with pH, which is consistent with surface tension measurement result. QCM(quartz crystal microbalance) measurement showed that surfactant adsorption increased with surfactant concentration but decreased with pH. According to the friction measurement, best fabric softening effect by imidazoline surfactant system was found under alkali conditions.

Effect of Cosurfactant on Phase Equilibrium and Dynamic Behavior in Ternary Systems Containing Nonylphenol Ethoxylate Surfactant, Water and Hydrocarbon Oil (보조계면활성제가 노닐페놀 에톡실레이트 계면활성제, 탄화수소 오일, 물로 이루어진 삼성분계의 상평형 및 동적거동에 미치는 영향)

  • Lim, HeungKyoon;Lee, Seul;Mo, DaHee;Lim, JongChoo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.969-979
    • /
    • 2012
  • In this study, the effects of cosurfactant on phase equilibrium and dynamic behavior were studied in systems containing nonylphenol ethoxylate (NP) surfactant solutions and nonpolar hydrocarbon oils. All the cosurfactants used during this study such as n-pentanol, n-octanol and n-decanol acted as a hydrophobic additive and the hydrophobic effect was found to increase with both increases in chain length and amount of addition of a cosurfactant. Dynamic behavior studies under hydrophilic conditions showed that the solubilization of hydrocarbon oil by NP micellar solution is controlled by an interface-controlled mechanism rather than a diffusion-controlled mechanism. Both spontaneous emulsification of water into oil phase and expansion of oil drop were observed under lipophilic conditions because of diffusion of surfactant and water into oil phase. Under conditions of a three phase region including a middle-phase microemulsion, both rapid solubilization and emulsification of oil into aqueous solutions were found mainly due to the existence of ultralow interfacial tension.

Effect of Cosurfactant on Microemulsion Phase Behavior in NP7 Surfactant System (보조계면활성제가 NP7 계면활성제 시스템의 마이크로에멀젼 형성에 미치는 영향에 관한 연구)

  • Lim, HeungKyoon;Lee, Seul;Mo, DaHee;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.416-422
    • /
    • 2011
  • In this study, the effect of cosurfactant on the phase equilibrium and dynamic behavior was studied in systems containing NP7 nonionic surfactant solutions and nonpolar hydrocarbon oils. All cosurfactants used during this study such as n-pentanol, n-octanol and n-decanol acted as a hydrophobic additive and thus promoted the transition from an oil in water (O/W) microemulsion (${\mu}E$) in equilibrium with an excess oil phase to a three-phase region containing excess water, excess oil, and a middle-phase microemulsion and further to a water in oil (W/O) ${\mu}E$ in equilibrium with the excess water phase. The transition temperature was found to decrease with both increases in the chain length and amount of addition of a cosurfactant. Dynamic behavior studies under O/W ${\mu}E$ conditions showed that an oil drop size decreased with time due to the solubilization into micelles. On the other hand, both the spontaneous emulsification of water into the oil phase and the expansion of oil drop were observed under W/O ${\mu}E$ conditions because of the diffusion of surfactant and water into the oil phase. Under conditions of a three-phase region including a middle-phase ${\mu}E$, both the rapid solubilization and emulsification of the oil into aqueous solutions were found mainly due to the existence of ultra-low interfacial tension. Dynamic interfacial tension measurements have been found to be in a good agreement with dynamic behavior results.

Effect of Surface Preparation and Curing Condition on the Interfacial Bond Strength between Ultra High Performance Concrete and Normal Strength Concrete (표면처리 및 양생 조건이 초고성능 콘크리트-보통 콘크리트 계면 부착강도에 미치는 영향)

  • Kang, Sung-Hoon;Hong, Sung-Gul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.149-160
    • /
    • 2015
  • This study reports the interfacial bond strength between Ultra High Performance Concrete (UHPC) and Normal Strength Concrete (NSC). While previous studies have focused on the interfacial strength between NSC substrate and UHPC overlay, this study use precast UHPC for enhanced constructability and replacement of formwork. The factors affecting the interface strength are comprehensively reviewed. It can be classified into: interface shape, degree of hardening and moisture condition of UHPC before combining with NSC, and curing condition of composite materials. Conducted experiments verify the effects of each factor on the interface strength and, accordingly show different failure modes. In particular, a new failure mode of the failure of a part of UHPC was firstly found in the case of sample with rough interface between UHPC and NSC. The other factors of the degree of hardening and the moisture and curing conditions of UHPC were discussed. This research will provide a valuable foundation to utilize the UHPC as a composite material.