• 제목/요약/키워드: 계류

검색결과 821건 처리시간 0.021초

기획 - 국회 계류 원자력 관련 법률안 및 개정안

  • 한국원자력산업회의
    • 원자력산업
    • /
    • 제37권5호
    • /
    • pp.28-48
    • /
    • 2017
  • 본지는 2016년 10월호(통권 365호)와 2017년 2월호(통권 369호)를 통해 국회에 계류되어 있는 원자력 관련 법률안 및 일부개정법률안 36건을 소개한 바 있다. 그 이후 5월 24일 현재 '원자력발전소의 단계적 폐쇄 및 에너지전환 특별법안'이 발의되었고, 원자력안전법 일부개정법률안 6건, 방사성폐기물 관리법 일부개정법률안 1건, 발전소주변지역 지원에 관한 법률 일부개정법률안 2건 등이 발의되었다. 발의된 의안들은 현재 해당 소관위 심사중이며 본회의에서 처리된 의안은 아직까지 없다. 올해 2월 22일 이후 제안된 의안들을 사안별로 나누어 제안 이유와 주요 내용, 의안 전문을 게재하며 사계의 진단을 기대한다.

  • PDF

군장신항만의 항주파로 인한 계류안정성해석 (Mooring Analysis due to Ship Wave at Gunzang New Port)

  • 김재수;공병승;홍남식
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.69-74
    • /
    • 2008
  • This study performed a numerical simulation to predict the development of ship waves and their propagation in the shallow water region of Gunzang New Port and to examine the stability of taut line mooring at the sea wall using the design criteria. In order to predict the propagation of ship waves based on the speeds of various ships under complicated and shallow water depths, a computer model was constructed based on the Boussinesque equation with a fixed coordinate system. Additionally, an investigation if the stability was made by applying MOSES under the environmental loadings estimated by OCIMF.

다점지지 계류시스템의 정적해석에 대한 연구 (A Study on the Analysis of Multi-let Spread Mooring Systems)

  • 신현경;김덕수
    • 한국해양공학회지
    • /
    • 제9권2호
    • /
    • pp.53-60
    • /
    • 1995
  • A multi-leg spread mooring system for floating offshore structures is important, but the multi-leg static analysis is complicated due to the nonlinear behavior of each line and the effect of current which affects each line differently. The pretensioned position of the multi-leg mooring system obtained from the static equilibrium condition changes into a different position due to external loads and current. In this paper, the new position and the static tension at each line are caculated. The relation between the initial static equilibrium position and the new position due to the external loads is expressed in terms of the Taylor's series expansion. The Runge-Kutta $4^{th}$ method is employed in analyzing the 3-dimensional static cable nonlinear equations.

  • PDF

경사 입사파중 계류된 부유식 방파제의 운동응답과 투과율 해석 (Analysis on Motion Responses and Transmission Coefficients of a Moored Floating Breakwater in Oblique Incident Waves)

  • 조일형;표상우
    • 한국해양공학회지
    • /
    • 제23권3호
    • /
    • pp.6-13
    • /
    • 2009
  • Based on the boundary element method, the motion responses and transmission coefficients of a moored floating breakwater were investigated in oblique waves. To satisfy the outgoing radiation condition in the far field, the fluid domain was divided into inner and outer regions. The complete solution could be obtained by applying the matching conditions between the eigenfunction-based outer solution and BEM-based inner solution. Using the developed predictive tools, the wave exciting forces, added mass, damping coefficients, motion responses, and transmission coefficients were assessed for various combinations of breakwater configuration, wave heading, mooring cables properties, and wave characteristics. It was found that the transmission coefficient for a moored floating breakwater was closely dependent on the motion responses, which were greatly amplified at the resonant frequencies.

인장계류식 해양구조물의 동적응답 특성 (Dynamic Response Characteristics of Tension Leg Platforms in Waves)

  • 이창호;손영길
    • 동력기계공학회지
    • /
    • 제2권2호
    • /
    • pp.81-86
    • /
    • 1998
  • The dynamic response characteristics of Tension Leg Platforms(TLPs) in waves are examined for presenting the basic data for design of TLPs. The numerical approach is based on a combination of the three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLP is assumed to be flexible instead of rigid. Restoring forces by hydrostatic pressure on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the motion and structural analysis. Numerical results are compared with the experimental ones, which are obtained in the literature, concerning the motion and tension responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

조류와 파랑 중의 인장계류식 해양구조물의 거동해석 (Behavior Analysis of a Tension Leg Platform in Current and Waves)

  • 이승철;박찬홍;배성용;구자삼
    • 동력기계공학회지
    • /
    • 제15권1호
    • /
    • pp.64-71
    • /
    • 2011
  • The Tension Leg Platform(TLP) is restrained from oscillating vertically by tethers(or tendons), which are vertical anchor lines tensioned by the platform buoyancy larger than the platform weight. Thus a TLP is a compliant structure which allows lateral movements of surge, sway, and yaw but restrains heave, pitch, roll. In this paper, the motions of a TLP in current and waves were investigated. Hydrodynamic forces and wave exciting forces acting on the TLP were evaluated using the three dimensional source distribution method. The motion responses and tension variations of the TLP were analyzed in the case of including current or not including one in regular waves and effects of current on the TLP were investigated.

안벽에 계류된 선박의 비선형 운동응답 (Nonlinear Motion Responses of a Moored Ship beside Quay)

  • 이호영;임춘규;유재문;전인식
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.8-15
    • /
    • 2003
  • When a typoon sets into harbour, a moored ship shows erratic motions and even mooring line failure may occur. such troubles may be caused by harbour resonance phenomena, resulting in large motion amplitudes at low frequency, which is close ti the natural frequency of th moored ship. The nonlinear motions of a ship moored to quay are simulated under external forces due to wave, current including mooring forces in time domain. The forces due to waves are obtained from source and dipole distribution method in the frequency domain. The current forces are calculated by using slow motion maneuvering equation in the horizontal plane. The wind forces are calculated from the empirical formula of ABS and the mooring forces of ropes and fenders are modeled as linear spring.

다방향 불규칙파중의 인장계류식 해양구조물의 시간영역 해석 (Time Domain Analysis of a Tension Leg Platform in Multi-Directional Irregular Waves)

  • 이창호;김철현
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.36-41
    • /
    • 2006
  • The main object of this study is to develop an accurate and convenient method for the response analysis of offshore structures in real sea states. A numerical procedure is described for predicting the motion responses and tension variations of the ISSC TLP in multi-directional irregular waves. The developed numerical approach in the frequency domain is based on acombination of the three dimensional source distribution method, the dynamic response analysis method, and the spectral analysis method. Frequency domain analysis in the multi-directional irregular waves is expanded to a time domain analysis by using a convolution integral after obtaining the impulse response by Fourier transformation. The results of the comparison between responses in the frequency and time domain confirmed the validity of the proposed approach.

해상 부유체의 진동 분석을 위한 AR-ARX 모델링에 관한 연구

  • 임정빈;양원재;김종호;이동주
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2012년도 춘계학술대회
    • /
    • pp.157-159
    • /
    • 2012
  • 바람이나 파도에 의해서 해상 부유체의 진동이 발생하는데, 이러한 진동은 부유체와 부유체에 접안시킨 이동체 사이에 접촉을 야기하기 때문에 부유체나 이동체에 손상이 발생한다. 이 논문에서는 AR(Autoregressive) 모델과 ARX(AR with eXogenous) 모델을 이용하여 부유체에 발생하는 진동 모델링에 관해서 기술한다. 연구 방법은, 기준 잡음신호를 생성하여 기준 모델 계수를 구하고, 모의 충격신호를 생성하여 충격 모델 계수를 구한 후, 충격 신호만을 추출하여 가해진 충격의 정도를 분석 평가하였다. 본 연구는 향후 요트와 요트계류장의 안전확보 시스템 개발을 위한 기초 연구로 활용할 예정이다.

  • PDF

터렛계류된 FPSO의 비선형 운동 해석 (Nonlinear Motion Analysis of FPSO with Turret Mooring System)

  • 임춘규;이호영
    • 대한조선학회논문집
    • /
    • 제40권1호
    • /
    • pp.20-27
    • /
    • 2003
  • The FPSO is moored by mooring lines to keep the position of it. The nonlinear motion analysis of the moored FPSO must be carried out in the initial design stage because sea environments affect motion of it. In this paper, the mathematical model is based on the slow motion maneuvering equations in the horizontal plane considering wave, current and wind forces. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical model of MMG. The turret mooring forces are quasi-statically evaluated by using the catenary equation. The coefficients of a model for wind forces are calculated from Isherwood's experimental data and the variation of wind speed is estimated by wind spectrum according to the guidelines of API-RP2A. The nonlinear motions of FPSO are simulated under external forces due to wave, current, wind including mooring forces in time domain.