• Title/Summary/Keyword: 계류력

Search Result 129, Processing Time 0.019 seconds

Estimation of Dynamic Motions and Mooring Forces for Floating Type Offshore Platform Based on Hydrodynamic Analysis (동수력학 해석 기반 부유식 해양 플랫폼의 동적 운동 및 계류력 산정)

  • Cha, Ju-Hwan;Moon, Chang-Il;Song, Chang-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.48-57
    • /
    • 2012
  • This paper deals with numerical analyses in the context of estimations of hydrodynamic motions and dynamic loads for a floating type offshore platform using some exclusive simulation code such as code for the simulation of a floating type of offshore crane based on multi-body dynamics, along with the commercial code AQWA. Verifications of numerical models are carried out by comparing the RAO results from the simulation code. In the verification analyses, hydrodynamic motions are examined in the frequency domain for the floating type offshore platform according to the mooring lines. Both the hydrodynamic motions and dynamic loads are estimated for floating type offshore platforms equipped with the catenary type and taut mooring lines. A review and comparison are carried out for the numerically estimated results. The structural safety of the connection parts in an offshore structure such as a floating type offshore platform is one of the most important design criteria in view of fatigue life. The dynamic loads in the connecting area between a floating type offshore platform and its mooring lines are estimated in detail according to variations in the mechanical properties of the mooring lines. The dynamic tension load on the mooring lines is also estimated.

Dynamic Behavior of Submerged Floating Tunnel by Underwater Explosion (수중폭발에 의한 해중터널의 동적거동)

  • Hong, Kwan-Young;Lee, Gye-Hee;Lee, Seong-Lo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.215-226
    • /
    • 2018
  • In this paper, to estimate the dynamic behavior of a submerged floating tunnel(SFT) by underwater explosion(UE), the SFT is modeled and analyzed by the explicit structural analysis package LS-DYNA. The section of SFT near to explosion point is modeled to shell and solid elements using elasto-plasticity material model for concrete tubular section and steel lining. And the other parts of the SFT are modeled to elastic beam elements. Also, mooring lines are modeled as tension-only cable elements. Total mass of SFT is including an added mass by hydrodynamic effect. The buoyancy on the SFT is considered in its initial condition using a dynamic relaxation method. The accuracy and the feasibility of the analysis model aree verified by the results of series of free field analysis for UE. And buoyancy ratio(B/W) of SFT, the distance between SFT and an explosion point and the arrangement of mooring line aree considered as main parameters of the explosion analysis. As results of the explosion analysis, the dynamic responses such as the dent deformation by the shock pressure are responded less as more distance between SFT and an explosion point. However, the mooring angle of the diagonal mooring system can not affect the responses such as the horizontal displacement of SFT by the shock pressure.

Wave Responses and Ship Motions in a Harbor Excited by Long Waves(I) (항만내 파도응답과 계류선박의 운동해석(I))

  • I.H. Cho;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.38-47
    • /
    • 1992
  • The motion response of a ship moored in a rectangular harbor excited by long waves has been studied theoretically and experimentally. Within the framework of potential theory, matched asymptotic expansion techniques are exployed to analyze the problem. The fluid domain is divided into the ocean and the harbor regions for the analysis of wave response in a harbor without ship. The wave responses in both the ocean and the harbor sides are solved first independently in terms of Green's functions, which are the solutions of the Helmholtz equation satisfying appropriate boundary conditions. Slender body approximations are used to obtain the velocity jumps across the ship, which are associated with the symmetric motion modes of the ship. Unknowns contained in each solution are finally determined by matching at an intermediate zone between two neighboring regions. Theoretical results predict the ship motion qualitatively well. The main source of quantitative discrepancies is presumably due to real fluid effects such as separation at the harbor entrance and friction on harbor boundaries.

  • PDF

Large Slow-Drift Motions of a Floating Body in Slightly Modulated Waves (해상(海上)에 계류(繫留)된 부유체(浮遊體)의 표류운동(漂流運動) 해석(解析))

  • Dong-J.,Kim;Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.3-14
    • /
    • 1990
  • For a moored body on the sea surface, incident waves with narrow-banded spectra excite the body oscillations of short and long periods. Since the period of slow oscillations can be as long as the natural period of the moored body in horizontal modes, resonance can occur and resulting large motions may cause significant strains in mooring cables. By using the perturbation method of multiple scales, the large slow motion can be analyzed without solving any second-order potentials explicitly. To the leading order, the flows associated with the fast and slow motions interact only parametrically and thus they can be studied separately. It is found that the slow motion strongly depends on the mooring stiffness. In particular, if the moring stiffness is considerably weak compared to the body inertia, the slow motion is highly amplified near resonance. It is also shown that the slow motion is associated with the generation of long waves.

  • PDF

Nonlinear Motion Responses of a Moored Ship beside Quay (안벽에 계류된 선박의 비선형 운동응답)

  • 이호영;임춘규;유재문;전인식
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • When a typoon sets into harbour, a moored ship shows erratic motions and even mooring line failure may occur. such troubles may be caused by harbour resonance phenomena, resulting in large motion amplitudes at low frequency, which is close ti the natural frequency of th moored ship. The nonlinear motions of a ship moored to quay are simulated under external forces due to wave, current including mooring forces in time domain. The forces due to waves are obtained from source and dipole distribution method in the frequency domain. The current forces are calculated by using slow motion maneuvering equation in the horizontal plane. The wind forces are calculated from the empirical formula of ABS and the mooring forces of ropes and fenders are modeled as linear spring.

Motion Analyses for a Very Large Floating Structure with Dolphin Mooring Systems in Irregular Waves (불규칙파 중에서 돌핀 계류된 해상공항에 대한 운동 해석)

  • 이호영;신현경;임춘규;강점문;윤명철
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.57-62
    • /
    • 2000
  • The very large flcating structure which am be used for as airport may be as large as several kilomet wide. The first order wave forces as well as wave drift forces are very important forces on such a very large floating In the present studv, the time simulation of motion responses with dolphin-moored VLFS in waves is presented The coeffcients and wave forces involved in the equations are obtained from a three-dimensionul panel method in the frequc The horizontal drift forces and mooring forces for dolphin systems are taken into account. As for numerical example, analyses are carried out for a VLFS in irregular wave condition

  • PDF

Time Domain Analysis of a Moored Spar Platform in Waves (파랑 중 계류된 스파 플랫폼의 시간영역 해석)

  • Lee, Ho-Young;Lim, Choon-Gyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.1-7
    • /
    • 2004
  • The Spar platform with deep draft is characterized as effective structure in extreme wave condition, which has larger natural period than that of waves in sea. In this paper, the time domain simulation of motion responses of Spar with catenary mooring line is presented in irregular waves. The memory effect is modeled by added mass at infinite frequency and convolution integrals in terms of wave damping coefficients. The added mass, wave damping coefficients and wave exciting forces are obtained from three-dimensional panel method in the frequency domain. The motion equations are consisted of forces for inertia, memory effect, hydrostatic restoring, wave exciting and mooring line. The forces of mooring line are modeled as quasi-static catenary cable.

Drift Motion Analyses for a FPSO with Spread Mooring Systems (다점 계류된 원유 저장선에 대한 표류 운동 해석)

  • 이호영;임춘규;신현경
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.222-227
    • /
    • 2001
  • The time simulation of slow drift motions of moored FPSO in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and are consisted of horizonal plane -surge, sway and yaw. The added mass coefficients, wave damping coefficients, first order wave exciting forces and the second order wave drift forces involved in the equations are obtained from a three-dimensional panel method in the frequency domain. The mooring lines are modeled quasistatically as catenary for chains and touchdown. As for numerical example, time domain analyses are carried out for a box-type FPSO in long crest irregular wave condition.

  • PDF

Nonlinear Response Analyses for a Barge-Mounted Plant with Dolphin Mooring Systems in Irregular Waves (불규칙파 중에서 돌핀 계류된 바아지식 해상공장에 대한 비선형 응답 해석)

  • 이호영;신현경;염재선
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.1-8
    • /
    • 2000
  • The time simulation of motion responses of dolphin-moored BMP in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and solved in time domain by using the Newmark $\beta$ method. The hydrodynamic coefficient and first order wave exciting forces involved in the equations are obtained from a three-dimensional panel method in the frequency domain. The second order wave drift forces and mooring for dolphin system are taken into account. As for numerical example, time domain analysis are carried out for a BMP in irregular wave condition.

  • PDF

An Experimental Analysis on the Motion Response of a Moored Semi-Submersible Platform in Regular Waves (계류된 반잠수식 시추선의 운동특성에 관한 실험적 고찰)

  • 홍사영;이판묵;홍도천
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.59-70
    • /
    • 1988
  • This paper presents the results of motion tests of a moored semi-submersible platform in regular waves. To investigate the effects of mooring system on the motion characteristics, the tests were performed under the various mooring conditions in regular head and beam waves. Two types of mooring system were employed: one is composed of soft springs and the other is of chains. In the case of chains the pretensions were varied to investigate the dynamic effects of mooring forces as well as the motion responses of the semi-submersible. The motion responses and mooring tensions were measured and analyzed by the double amplitude method. The measured motion responses were also compared with the results of calculation from three-dimensional potential theory. Finally, the dynamic behaviors of mooring chains were studied.

  • PDF