• Title/Summary/Keyword: 경화공정

Search Result 409, Processing Time 0.028 seconds

UV Curing and Peeling Characteristics of Acrylic Coating Ink with Various Amounts of Photoinitiator, Oligomer and Talc (광개시제, 올리고머 그리고 Talc 함량에 따른 아크릴계 코팅제의 UV경화 및 박리특성)

  • Yang, Jee-Woo;Seo, Ah Young;Lee, Chul Woo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.499-506
    • /
    • 2013
  • As the usuage of tempered glass for touch panel increased rapidly with the development of industry, the amount of UV curable coating solution used to protect glass surfaces during a tempered glass manufacturing process increased as well. The UV curable coating has advantages compared to thermal curing such as shortened curing time and non-solvent. Appropriated polymer and monomer were used as an acid polymer to grant an alkali peeling ability. The monomers were 2-hydroxyl methylacrylate, 1,6-hexanediol diacrylate and dipentaerythritol hexaacrylate which have acryl groups of 1, 2, and 6, respectively. The combination of three different types of photoinhibitors were used and bisphenol A epoxy diacrylate was used as an oligomer. In this study, experiments were carried out by controlling the amount of photoinitiator, oligomer, and additive while maintaining the constant content of the acid polymer and the acrylic monomer. The changes in physical properties according to the additive content were investigated. It was found that the combination of photoinitiators was necessary to achieve the hardness above 4H and it was possible to control the delamination type of the coating film from a sheet to pieces by the addition of TPO as an initiator. The increase in oligomer contents increased the hardness and adhesiveness alongside dissection time. Talc content of 20 wt% showed the best results.

Wafer Level Hermetic Sealing Characteristics of RF-MEMS Devices using Non-Conductive Epoxy (비전도성 에폭시를 사용한 RF-MEMS 소자의 웨이퍼 레벨 밀봉 실장 특성)

  • 박윤권;이덕중;박흥우;송인상;김정우;송기무;이윤희;김철주;주병권
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.11-15
    • /
    • 2001
  • In this paper, hermetic sealing technology was studied for wafer level packaging of the RF-MEMS devices. With the flip-chip bonding method. this non-conductive B-stage epoxy sealing will be profit to the MEMS device sealing. It will be particularly profit to the RF-MEMS device sealing. B-stage epoxy can be cured by 2-step and hermetic sealing can be obtained. After defining 500 $\mu\textrm{m}$-width seal-lines on the glass cap substrate by screen printing, it was pre-baked at $90^{\circ}C$ for about 30 minutes. It was, then, aligned and bonded with device substrate followed by post-baked at $175^{\circ}C$ for about 30 minutes. By using this 2-step baking characteristic, the width and the height of the seal-line could be maintained during the sealing process. The height of the seal-line was controlled within $\pm$0.6 $\mu\textrm{m}$ in the 4 inches wafer and the bonding strength was measured to about 20MPa by pull test. The leak rate, that is sealing characteristic of the B-stage epoxy, was about $10^{-7}$ cc/sec from the leak test.

  • PDF

Curing Behavior and Tensile Strength of Elastomeric Polyester and Polyvinylidene Fluoride for Automotive Pre-primed Coatings (자동차용 Pre-primed 적용을 위한 Polyester 및 Polyvinylidene Fluoride 도료의 경화거동과 인장강도 특성)

  • Hwang, Hyeon-Deuk;Moon, Je-Ik;Lee, Yong-Ju;Kim, Hyun-Joong;Hyun, Jin-Ho;Noh, Seung Man;Kang, Choong Yeol;Lee, Jae-Woo;Nam, Joon Hyun;Park, Jong Myung
    • Journal of Adhesion and Interface
    • /
    • v.10 no.4
    • /
    • pp.155-161
    • /
    • 2009
  • The most upcoming technical issue of automotive coating is the compact coating process. Pre-primed coating is the outstanding technology eliminating electro-deposition and primer coating process. The main properties of pre-primed coating for automotive are flexibility, corrosion resistance, and weldability. Therefore, we synthesized the conventional polyester, elastomeric polyester and polyvinylidene fluoride resins and evaluated their properties to use as weldable pre-primed automotive coatings. As the results of flexibility and curing behavior, the elastomeric polyester coating was most appropriate to use for the pre-primed automotive coatings.

  • PDF

Thermal and Mechanical Properties of Epoxy Composition Containing Modified Halosite Nanotubes with Silane Coupling Agent (실란 커플링제를 이용하여 개질한 할로이사이트 나노튜브가 함유된 에폭시 조성물의 열적·기계적 물성)

  • Kim, TaeHee;Lim, Choong-Sun;Kim, Jin Chul;Seo, Bongkuk
    • Journal of Adhesion and Interface
    • /
    • v.18 no.2
    • /
    • pp.68-74
    • /
    • 2017
  • Epoxy resins are widely used in various fields due to their excellent thermal, mechanical and chemical properties. In order to improve the mechanical properties of the epoxy composition after curing, various materials are mixed in the epoxy resin. Among the nano materials, CNT is the most widely used. However, CNT has limitations in terms of manufacturing process and manufacturing cost. Therefore, there is a growing interest in naturally occurring HNTs having similar structure to that of CNT. In this study, the thermal and mechanical properties of epoxy compositions containing HNTs treated with two types of silane compounds were investigated. The mechanical properties of silane-treated HNT were measured by using a universal testing machine. The differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), and thermomechanical analysis (TMA) were used to measure thermal properties. As a result of the above tests, when the HNT was surface-treated with aminosilane, the tensile strength of the epoxy composition containing the HNT was higher than that of the epoxy composition containing epoxy silane treated HNT. The linear thermal expansion coefficients (CTE) obtained from the thermomechanical analysis of the two epoxy compositions for the comparison of dimensional stability showed that the HNT composition treated with aminosilane showed a lower value of CTE than that of epoxy composition including the pristine HNT.

Effects of the Rheological Properties of UV Cured Acrylic Pressure Sensitive Adhesive with Nano-particles on the Silk Screen Printing and Adhesion (실크 스크린 인쇄 및 점착력에 나노 입자가 포함된 UV 경화형 아크릴계 감압 점착제의 유변학적 특성)

  • Cho, Min-Jeong;Kang, Ho-Jong;Kim, Dong-Bok
    • Journal of Adhesion and Interface
    • /
    • v.18 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • For application to display module junction process, the silk screen printing based on UV curable acrylic pressure sensitive adhesive(PSA) with silica nano-particles and the rheological properties were studied to investigate the effect on printability and adhesion. The monomers for PSA were based on 2-ethylhexyl acrylate(2-EHA) and acrylic acid(AA) 93:7, butyl acylate(BA), 2-hydroxyethyl acrylate(2-HEA) and tetrahydrofurfuryl acrylate(THFA) were added. Additionally, hydrophobic and hydrophilic nano-particles AEROSIL R974 and AEROSIL 200 were added, respectively. When the ratio of nano-particle was used above 4 or 7 phr, G' and ${\eta}^*$ were increased significantly. When the ratio of AEROSIL 200 was used above 7 phr, the penetration property was decreased during the silk screen printing. We found that the adhesion was decreased with increasing the nano-particle content, and it was decreased in the case of the hydrophilic nano-particle AEROSIL 200.

Modification of Water-borne Polyurethane Using Benzophenone Crosslinker (Benzophenone 가교제를 이용한 수분산 폴리우레탄 개질)

  • Kim, HyeokJin;Kim, Jin Chul;Chang, SangMok;Seo, BongKuk
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.221-226
    • /
    • 2016
  • Production of eco-friendly and biologically harmless materials is strongly required in all industries. In particular, reducing volatile organic compounds in coating processes is extremely important to secure worker's safety. During recent two decades, extensive research works on water-borne polyurethane dispersion (PUD) have been continuously developed as an alternative to solvent-borne polyurethane. However, PUD was shown inferior mechanical properties to the organic solvent-borne polyurethane due to a limit to the molecular weight increase, which resulted in the limit of applications. To overcome this drawback, several approaches have been examined such as polymer blends and thermal/radiation induced crosslinking. Among these methods, the radiation curing system was suitable for industrialization because of the high crosslinking density and fast curing speed. In this study, we overcame the drawback for PUD via introducing benzophenone radiation curable units to PUD. We synthesized PUD films which possessed good dispersion in water for 30 days, increased Tg and Td more than $5^{\circ}C$ after UV curing film as well as improved young's modulus more than double.

Test Evaluation of a Linerless Composite Propellant Tank Using the Composite Collapsible Mandrel (복합재 분리형 맨드릴을 이용한 라이너 없는 복합재 추진제 탱크에 대한 시험 평가)

  • Seung Yun Rhee;Kwangsoo Kim;Young-Ha Yoon;Moo-Keun Yi;Hee Chul Kim
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.132-139
    • /
    • 2023
  • A linerless composite propellant tank was designed and manufactured by using the carbon fiber-reinforced composite materials which have superior strength-to-weight ratio in order to reduce weight of the tank. In this research, we designed a sub-scale composite propellant tank with a diameter of 800 mm to withstand an MEOP of 1.7 MPa. We manufactured the boss of the tank by using the same composite materials to reduce the thermal expansion difference between the boss and the secondary-bonded composite layers of the barrel in the cryogenic environment. We used the collapsible mandrel to manufacture the tank without any liner. The mandrel was made from epoxy-based composite tooling prepregs to reduce weight of the mandrel. We manufactured the test tanks by laying up the carbon fiber fabric prepregs manually on the mandrel and then applying the autoclave cure process. We performed a proof test, a helium tightness test, a repeated pressurization test, and a burst test in room temperature. The test results demonstrate that the proposed design and manufacture process satisfies all strength requirements as well as an anti-leakage requirement.

The characteristic of InGaN/GaN MQW LED by different diameter in selective area growth method (선택성장영역 크기에 따른 InGaN/GaN 다중양자우물 청색 MOCVD-발광다이오드 소자의 특성)

  • Bae, Seon-Min;Jeon, Hun-Soo;Lee, Gang-Seok;Jung, Se-Gyo;Yoon, Wi-Il;Kim, Kyoung-Hwa;Yang, Min;Yi, Sam-Nyung;Ahn, Hyung-Soo;Kim, Suck-Whan;Yu, Young-Moon;Ha, Hong-Ju
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.5-10
    • /
    • 2012
  • In general, the fabrications of the LEDs with mesa structure are performed grown by MOCVD method. In order to etch and separate each chips, the LEDs are passed the RIE and scribing processes. The RIE process using plasma dry etching occur some problems such as defects, dislocations and the formation of dangling bond in surface result in decline of device characteristic. The SAG method has attracted considerable interest for the growth of high quality GaN epi layer on the sapphire substrate. In this paper, the SAG method was introduced for simplification and fabrication of the high quality epi layer. And we report that the size of selective area do not affect the characteristics of original LED. The diameter of SAG circle patterns were choose as 2500, 1000, 350, and 200 ${\mu}m$. The SAG-LEDs were measured to obtain the device characteristics using by SEM, EL and I-V. The main emission peaks of 2500, 1000, 350, and 200 ${\mu}m$ were 485, 480, 450, and 445 nm respectively. The chips of 350, 200 ${\mu}m$ diameter were observed non-uniform surface and resistance was higher than original LED, however, the chips of 2500, 1000 ${\mu}m$ diameter had uniform surface and current-voltage characteristics were better than small sizes. Therefore, we suggest that the suitable diameter which do not affect the characteristic of original LED is more than 1000 ${\mu}m$.

The influence of factors on the strength of formed coke made with anthracite and phenolic resin (무연탄(無煙炭)과 페놀수지(樹脂)의 혼합(混合)소성에 의해 제조(製造)된 함형(咸形)코크스의 강도(强度))

  • Lee, Gye-Seung;Song, Young-Jun
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.57-61
    • /
    • 2008
  • The aim of this study is to produce the coke which can be used for the production of ferroalloy, by mixing phenolic resin and anthracite and sintering it. The influence of factors on the strength of coke were investigated. The results of this study are as follows: It is found that the anthracite coke of $100{\sim}150\;kgf/cm^2$ strength for ferroalloy can be made by a series of process as follows; Mixing homogeneously 6% liquefied phenolic resin and 6% water with $35{\sim}325$ mesh anthracite of low ash content. Making pellet by press the mixture in $10-50\;kgf/cm^2$ pressure. Dehydrating the pellet for 6 hrs at $50^{\circ}C$, and hardening it for 180 min at $200^{\circ}C$. Sinter the mixture for 6 hrs at $1,200^{\circ}C$.

An Experimental Study of In-Mold Coating of Automotive Armrests (자동차 암레스트의 인몰드코팅에 관한 실험적 연구)

  • Park, Jong Rak;Lee, Ho Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.687-692
    • /
    • 2015
  • A mold design for in-mold coating was developed to achieve simultaneous coating and injection molding of an automotive armrest. The developed mold includes one core and two cavities which are composed of a substrate cavity and a coating cavity. The core was attached to a movable plate and two cavities were mounted on a plate sliding in a stationary plate. In a two-step process, the part was first injection molded and subsequently, with the aid of a sliding table, was transferred to a second cavity. The materials used were PC/ABS for substrate and two-component polyurethane for coating. The experiments were conducted by changing the flow rate to investigate mixing characteristics. As the flow rate increased, the mixing improved. Additionally, the bubbles appeared over the substrate surface decreased with an increase of the weight of injected coating material.