• Title/Summary/Keyword: 경험적 모드분석

Search Result 64, Processing Time 0.028 seconds

Temporal and spatial variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function (경험직교함수 분석에 의한 한반도 주변해역의 해수면온도 및 수온 전선의 시.공간 변화)

  • Yoon Hong-Joo;Byun Hye-Kyung
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.101-104
    • /
    • 2006
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST. As the result of EOF method applying SST, the variance of the 1st mode was 97.6%. It is suitable to explain SST conditions in the whole Korean seas. Time coefficients were shown annual variations and spatial distributions were shown the closer to the continent the higher SST variations like as annual amplitudes. The 2nd mode presented higher time coefficients of 1993, 94, and 95 than those of other years. Although the influence is a little, that can explain ElNINO effect to the Korean seas. TF were detected by Sobel Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpola. Front (SPF) dividing into the north and south part of the East sea, the Kuroshio Front (KF) in the East China Sea (ESC), the South Sea Coastal Front (SSCF) in the South sea, and the Tidal Front in the West sea. TF located in steep slope of submarine topography. The distributions of 1st mode in SST were bounded in the same place, and these results should be considered to influence of seasonal variations. To discover temporal and spatial variations of TF,SST gradient values were analyzed by EOF. The time coefficients fo the 1st mode (variance : 64.55%) showed distinctive annual variations and SPF, KF, and SSCF was significantly appeared in March. the spatial distributions of the 2nd mode showed contrast distribution, as SPF and SSCF had strong '-' value, where KF had strong '+' value. The time of '+' and '-' value was May and October, respectively. Time coefficients of the 3rd mode had 2 peaks per year and showed definite seasonal variations. SPF represented striking '+' value which time was March and October That was result reflected time of the 1st and 2nd mode. We can suggest specific temporal and spatial variations of TF using EOF.

  • PDF

Temporal and spatial variations of SST and Ocean Fronts in the Korean Seas by Empirical Orthogonal Function (경험 직교함수 분석에 의한 한반도 주변해역의 해수면온도 및 수온 전선의 시${\cdot}$공간 변화)

  • Yoon, Hong-Joo;Byun, Hye-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.397-402
    • /
    • 2005
  • In the Korean seas, Sea Surface Temperature (SST) and Thermal Fronts (TF) were analyzed temporally and spatially during 8 years from 1993 to 2000 using NOAA/AVHRR MCSST As the result of EOF method applying SST, the variance of the 1st mode was 97.6%. It is suitable to explain SST conditions in the whole Korean seas. Time coefficients were shown annual variations and spatial distributions were shown the closer to the continent the higher SST variations like as annual amplitudes. The 2nd mode presented higher time coefficients of 1993, 94, and 95 than those of other years. Although the influence is a little, that tan explain EININO effort to the Korean seas. TF were detected by Sobel Edge Detection Method using gradient of SST. Consequently, TF were divided into 4 fronts; the Subpolar Front (SPF) dividing into the north and south part of the East sea , the Kuroshio Front (KF) in the East China Sea (ESC), the South Sea Coastal Front (SSCF) in the South sea, and the Tidal Front in the West sea. TF located in steep slope of submarine topography. The distributions of 1st mode in SST were bounded in the same place, and these results should be considered to influence of seasonal variations. To discover temporal and spatial variations of TF, SST gradient values were analyzed by EOF. The time coefficients fo the 1st mode (variance : 64.55%) showed distinctive annual variations and SPF, KF, and SSCF was significantly appeared in March. the spatial distributions of the 2nd mode showed contrast distribution, as SPF and SSCF had strong'-'value, where KF had strong'+'value. The time of'+'and'-'value was May and October, respectively. Time coefficients of the 3rd mode had 2 peaks per year and showed definite seasonal variations. SPF represented striking'+'value which time was March and October. That was result reflected time of the 1st and 2nd mode. We can suggest specific temporal and spatial variations of TF using EOF.

  • PDF

A study on the influence of the China Coastal Waters nearby Jeju Island Using Satellite Data (위성 자료를 이용한 제주도 주변해역의 중국대륙연안수 영향에 관한 연구)

  • Cho Han-Keun;Yoon Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.91-94
    • /
    • 2006
  • China Coastal Waters (CCW) usually appears in the seas surrounding Jeju Island annually(June to October) and is very pronounced in August. Generally, low-salinity water appears to the western seas of Jeiu Island from June through October and gradually propagates to the eastern seas, where CCW meets the Tsushima Current. Empirical orthogonal function (EOF) analysis of SLAs and SSTs indicated that the valiance in SLAs and SSTs was 95.05%(the first mode to third mode) and 98.09%(the first mode), respectively The PSD of the western waters for the first mode of EOF analysis of SLAs was stronger than that of the eastern waters because of the influence of CCW. The PSD for the EOF analysis of SSTs was similar in all areas (the Yangtze Estuary and the seas to the west and east of Jeju Island), with a period of approximately 260 days.

  • PDF

Interannual Variability of Sea Water Temperatures in the Southern Waters of the Korean East Sea (한국 동남해역의 장주기 수온변동)

  • Ro, Young Jae
    • 한국해양학회지
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 1989
  • This study analyzes the interannual periodicity by using the statistical techniques of probability, spectral analysis, empirical orthogonal function analysis (EOF), and coherency analysis. The data base for this study is the time series of 1971-1985 temperature, salinity in the southern waters of the East Sea, 1960-1986 mean sea level at Pusan and Izuhara, and 1960-1986 sea level atmospheric pressure at Pusan. The appearances of anomalous temperatures higher and lower than 15-year mean monthly average with one standard deviation are about 30% of total data. The significant interannual period for temperature, salinity and sea level fluctuation is 36.6, and 23.3 months. The empirical orthogonal function analyses show that the 1st mode of the EOFs is responsible for more than 90% of total variance of the surface temperature variations, while in near-bottom waters, the relative importance of the higher EOF modes is much greater explaining more than 30% of total variance. The coherency between normalized temperatures and salinities is significant at the interannual period of 36.6 and 21.3 months.

  • PDF

Analysis of Baltic Dry Bulk Index with EMD-based ANN (EMD-ANN 모델을 활용한 발틱 건화물 지수 분석)

  • Lim, Sangseop;Kim, Seok-Hun;Kim, Daewon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.329-330
    • /
    • 2021
  • 벌크화물운송은 해상운송시장에서 가장 큰 규모이고 철강 및 에너지 산업을 뒷받침 하는 중요한 시장이다. 또한 운임의 변동성이 가장 큰 시장으로 상당한 수익을 기대할 수 있는 반면에 파산에 이르는 큰 손실이 발생할 수 있기때문에 시장 참여자들은 합리적이고 과학적인 예측을 기반하여 의사결정을 해야 한다. 그러나 해운시장에서는 과학적 의사결정보다는 경험기반의 의사결정에 의존하기 때문에 시황변동성에 취약하다. 본 논문은 벌크운임예측에 신호 분해 방법인 EMD와 인공신경망을 결합한 하이브리드 모델을 적용하여 과학적 예측방법을 제시하고자 한다. 본 논문은 학문적으로 해운시장 운임예측연구에서 거의 시도되지 않았던 시계열분해법과 기계학습기법을 결합한 하이브리드 모델을 제시하였다는데 의미가 있으며 실무적으로는 해운시장에서 빈번이 일어나는 의사결정의 질이 제고되는데 기여할 것으로 기대된다.

  • PDF

Study on Surface Enhanced Raman Scattering of Indigo Carmine (lndigo Carmine의 표면증강라만스펙트럼에 관한 연구)

  • Lee, Chul Jae
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.155-160
    • /
    • 2018
  • In this study, the experiments for surface enhancement of silver mirror substrates were done, where we checked the characteristics of silver surface made by Tollen's and ${\gamma}$- irradiation method. The surface enhancement of Indigo carmine was analyzed by silver mirror and silver sol surfaces. The assignments of the vibrational bands shown in SERS spectra are given based on both literature and the semi-empirical calculations at the PM3 methods. We deduced that the adsorption orientation of Indigo carmine was little tilted perpendicular to the silver surfaces by using of the surface selection rules.

Selection of Climate Indices for Nonstationary Frequency Analysis and Estimation of Rainfall Quantile (비정상성 빈도해석을 위한 기상인자 선정 및 확률강우량 산정)

  • Jung, Tae-Ho;Kim, Hanbeen;Kim, Hyeonsik;Heo, Jun-Haeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.165-174
    • /
    • 2019
  • As a nonstationarity is observed in hydrological data, various studies on nonstationary frequency analysis for hydraulic structure design have been actively conducted. Although the inherent diversity in the atmosphere-ocean system is known to be related to the nonstationary phenomena, a nonstationary frequency analysis is generally performed based on the linear trend. In this study, a nonstationary frequency analysis was performed using climate indices as covariates to consider the climate variability and the long-term trend of the extreme rainfall. For 11 weather stations where the trend was detected, the long-term trend within the annual maximum rainfall data was extracted using the ensemble empirical mode decomposition. Then the correlation between the extracted data and various climate indices was analyzed. As a result, autumn-averaged AMM, autumn-averaged AMO, and summer-averaged NINO4 in the previous year significantly influenced the long-term trend of the annual maximum rainfall data at almost all stations. The selected seasonal climate indices were applied to the generalized extreme value (GEV) model and the best model was selected using the AIC. Using the model diagnosis for the selected model and the nonstationary GEV model with the linear trend, we identified that the selected model could compensate the underestimation of the rainfall quantiles.

On the characteristics of the 1993/1994 east Asian summer monsoon convective activities using GMS high cloud amount

  • ;;Moon, Sung-Euii;Sohn, Seoung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.1-21
    • /
    • 1995
  • The characteristics of the Asian summer monsoon have been investigated for the periods of 1993/1994, the contrasting years in a view of the summer monsoon precipitation. In order to investigate the monsoon features over the eastern Asian monsoon region, the cloudiness(using the extensive data derived by the geostationary meteorological satellite), the condition of underlying surface including sea-surface temperature, and the summer rainfall are analyzed and some comparisons with 1993 and 1994 are also made and the characteristic differences are discussed. An analysis of the 2-degree latitude-longitude gridded 5-day mean high cloud amount data shows the detailed movement and persistence of the convective activities. In order to describe the spatial and temporal structures of the intraseasonal oscillation for the movement and evolution of the monsoon cloud, the extended empirical orthogonal fnction analysis with the twenty-day window size is used for the each year. Also, in order to find out the periodicity of the equatorial convective cluster, Fourier harmonic analysis is applied to the each year. The most prevailing intraseasonal oscillations of high cloud amount are 61 day mode and 15day mode in the equatorial and the subtropical oceans. However it was found that the most prevailing modes over the equatorial western Pacific and Indian Ocean were different for each year, hence raising the possibillity that the contrasting monsoon presipitation may be more fundamentally related to the interaction of intraseasonal oscillations and seasonal variation of convective activities over the lower latitude ocean.

Multimodal based Storytelling Experience Using Virtual Reality in Museum (가상현실을 이용한 박물관 내 멀티모달 스토리텔링 경험 연구)

  • Lee, Ji-Hye
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.10
    • /
    • pp.11-19
    • /
    • 2018
  • This paper is about multimodal storytelling experience applying Virtual Reality technology in museum. Specifically, this research argues virtual reality in both intuitive understanding of history also multimodal experience in the space. This research investigates cases regarding use of virtual reality in museum sector. As a research method, this paper conducts a literature review regarding multimodal experience and examples applying virtual reality related technologies in museum. Based on the literature review to investigate the concept necessary with its related cases. Based on the investigation, this paper suggests constructing elements for multimodal storytelling based on VR. Ultimately, this paper suggests the elements of building VR storytelling where dynamic audio-visual and interaction mode combines with historical resources for diverse audiences.

Satellite-altimeter-derived East Sea Surface Currents: Estimation, Description and Variability Pattern (인공위성 고도계 자료로 추정한 동해 표층해류와 공간분포 변동성)

  • Choi, Byoung-Ju;Byun, Do-Seong;Lee, Kang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.225-242
    • /
    • 2012
  • This is the first attempt to produce simultaneous surface current field from satellite altimeter data for the entire East Sea and to provide surface current information to users with formal description. It is possible to estimate surface geostrophic current field in near real-time because satellite altimeters and coastal tide gauges supply sea level data for the whole East Sea. Strength and location of the major currents and meso-scale eddies can be identified from the estimated surface geostrophic current field. The mean locations of major surface currents were explicated relative to topographic, ocean-surface and undersea features with schematic representation of surface circulation. In order to demonstrate the practical use of this surface current information, exemplary descriptions of annual, seasonal and monthly mean surface geostrophic current distributions were presented. In order to objectively classify surface circulation patterns in the East Sea, empirical orthogonal function (EOF) analysis was performed on the estimated 16-year (1993-2008) surface current data. The first mode was associated with intensification or weakening of the East Korea Warm Current (EKWC) flowing northward along the east coast of Korea and of the anti-cyclonic circulation southwest of Yamato Basin. The second mode was associated with meandering paths of the EKWC in the southern East Sea with wavelength of 300 km. The first and second modes had inter-annual variations. The East Sea surface circulation was classified as inertial boundary current pattern, Tsushima Warm Current pattern, meandering pattern, and Offshore Branch pattern by the time coefficient of the first two EOF modes.