• Title/Summary/Keyword: 경충돌

Search Result 307, Processing Time 0.024 seconds

A Study on the Ship's Performance of T.S. HANBADA(III) - The Evaluation of Maneuvering Performance with Actual Ship Trials - (실습선 한바다호의 운항성능에 관한 연구(III) - 실선시험을 통한 조종성능 평가 -)

  • Jung, Chang-Hyun;Lee, Hyong-Ki;Kong, Gil-Yong
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.439-445
    • /
    • 2008
  • Various turning tests were carried out according to the rudder angle, turning direction, and the speed etc. with the ship's maneuverability measuring system on the training ship HANBADA. After that they were compared with each other on the turning circle, maneuvering performance index and the distance of new course, and then found out that they were satisfied with the IMO maneuvering standards. And the turning circles of port were smaller than those of starboard with all the rudder angles and maneuvering indexes such as K and T were relatively bigger than other vessels. Also, the distance cf new course was measured to $125{\sim}300m$ in case of the new course on $30^{\circ}{\sim}90^{\circ}$. All of these results will be helpful to escape from collision and to alter course on coastal voyage.

An Improved Depth-Based TDMA Scheduling Algorithm for Industrial WSNs to Reduce End-to-end Delay (산업 무선 센서 네트워크에서 종단 간 지연시간 감소를 위한 향상된 깊이 기반 TDMA 스케줄링 개선 기법)

  • Lee, Hwakyung;Chung, Sang-Hwa;Jung, Ik-Joo
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.530-540
    • /
    • 2015
  • Industrial WSNs need great performance and reliable communication. In industrial WSNs, cluster structure reduces the cost to form a network, and the reservation-based MAC is a more powerful and reliable protocol than the contention-based MAC. Depth-based TDMA assigns time slots to each sensor node in a cluster-based network and it works in a distributed manner. DB-TDMA is a type of depth-based TDMA and guarantees scalability and energy efficiency. However, it cannot allocate time slots in parallel and cannot perfectly avoid a collision because each node does not know the total network information. In this paper, we suggest an improved distributed algorithm to reduce the end-to-end delay of DB-TDMA, and the proposed algorithm is compared with DRAND and DB-TDMA.

"우주물체 전자광학 감시체계 기술개발" 소개

  • Park, Jang-Hyeon;Choe, Yeong-Jun;Jo, Jung-Hyeon;Im, Hong-Seo;Mun, Hong-Gyu;Park, Jong-Uk;Choe, Jin;Kim, Jae-Hyeok;Jo, Gi-In
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.130.1-130.1
    • /
    • 2011
  • 인류의 우주공간에 대한 영향력이 확대됨에 따라, 우주공간에서의 인위적인 활동에 영향을 미칠 수 있는 모든 종류의 상황들에 대한 이해가 최근 전 세계적으로 매우 중요한 이슈로 부상하고 있다. 이를 Space Situational Awareness (SSA)라고 하는데, 특히 근지구공간에서의 인위적, 자연적 우주물체는, 우주발사체의 지속적인 증가와 이리듐-코스모스 위성의 상호 충돌 및 중국 폐기위성 파괴 등과 같은 사건으로 기하급수적으로 증가된 우주물체의 개체수로 인해 대한민국 국적의 모든 위성에도 실제적인 위협 요인으로 대두되고 있다. 이에 기초 기술연구회와 한국천문연구원은 이러한 위협을 국가적으로 해결해야할 과제(National Agenda Project) 중의 하나로 정의하고, 이를 해결하기 위해 우주물체 전자광학 감시체계 기술개발(OWL; Optical Wide-field patroL) 사업을 시작하였다. 이 사업의 목표는 자국위성에 대한 궤도력을 독자적으로 유지할 수 있는 시스템을 개발하는 것이며, 이를 위하여 2011년부터 6년 동안 총 5개소의 해외 관측소에 50cm급 광시야 망원경을 각각 설치하여 자국위성을 자동으로 상시관측하고, 관측된 자료를 이용한 궤도계산을 통하여 독자적으로 궤도력을 유지할 계획이다. 또한, 우주잔해물 감시는 하나의 국가에서 단독으로 할 수 없기 때문에 2m급 우주물체 감시망원경을 개발하여 국제공동으로 진행할 계획이다. 사업 첫해인 2011년 4월 시스템 요구사항 분석을 완료하였고 10월말 시스템 기본설계를 완료할 예정이다. 최종 완성될 소구경 광시야 망원경과 우주물체 감시망원경의 주요 임무는 우주물체 관측이지만, 향후 광시야를 이용한 다양한 탐사천문학에도 기여할 수 있을 것으로 기대한다. 한편, 자국위성에 대한 충돌 위험도 분석 및 회피기동에 관한 연구는 한국항공우주연구원이 이 사업의 협동연구로 참여하고 있다.

  • PDF

A Study on Human Injury Characteristics and Vehicle Body Deformation with Car to Car Crash Test for Crash Compatability (${\cdot}$${\cdot}$대형 중고 승용차량에 대한 차 대 차 충돌시험을 통한 차체변형 및 인체상해 특성에 관한 연구)

  • Lim, Jong-Hun;Park, In-Song;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.135-141
    • /
    • 2005
  • Currently many safety assessment tests are conducted by crashing a vehicle against a rigid or deformable barrier. It is quite rational to evaluate crash performance of a vehicle in a barrier test in terms of vehicle stiffness and strength. However, there has been a lot of debate on whether barrier testing is a duplicate of real world crash collisions. One of the issues is car to car compatability. There are two essential subjects in compatability. One is partner-protection when crashing into another vehicle and the other is self-protection when struck by another vehicle. When considering a car to car frontal crash between a mini car and a large heavy car, it is necessary to evaluate human body stiffness of each vehicle. In this study, in order to evaluate the compatability of cars in car-to-car crashes, four tests were conducted. Test speed of each car is 48.3km/h, and the overlap of the mini and large car is $40\%$, and the overlap of the small cars is $100\%$. In all tests, only a drive dummy is used. The test results of the car to car crash test show that vehicle safety standard of mini car is not satisfied compared with large heavy car and HIC value of mini car is higher than large car. In this case observed that the relatively lower stiffness and weight of the mini car resulted in absorbing a large share of the total input energy of the system when crashed into the large heavy car.

A Study on Development ATCS of Transfer Crane using Neural Network Predictive Control (신경회로망 예측제어에 의한 Transfer Crane의 ATCS개발에 관한 연구)

  • Sohn, Dong-Seop;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.26 no.5
    • /
    • pp.537-542
    • /
    • 2002
  • Recently, an automatic crane control system is required with high speed and rapid transportation. Therefore, when container is transferred from th intial coordinate to the finial coordinate, the container paths should be built in terms of the least time and no swing. So in this paper, we calculated the anti-collision path for avoiding collision in its movement to the finial coordinate. And we constructed the neural network predictive PID (NNPPID) controller to control the precise navigation. The proposed predictive control system is composed of the neural network predictor, PID controller, neural network self-tuner which yields parameters of PID. Analyzed crane system through simulation, and proved excellency of control performance than other conventional controllers.

Routing of ALVs under Uncertainty in Automated Container Terminals (컨테이너 터미널의 불확실한 환경 하에서의 ALV 주행 계획 수립방안)

  • Kim, Jeongmin;Lee, Donggyun;Ryu, Kwang Ryel
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.493-501
    • /
    • 2014
  • An automated lifting vehicle(ALV) used in an automated container terminal is a type of unmanned vehicle that can self-lift a container as well as self-transport it to a destination. To operate a fleet of ALVs efficiently, one needs to be able to determine a minimum-time route to a given destination whenever an ALV is to start its transport job. To find a route free from any collision or deadlock, the occupation time of the ALV on each segment of the route should be carefully scheduled to avoid any such hazard. However, it is not easy because not only the travel times of ALVs are uncertain due to traffic condition but also the operation times of cranes en route are not predicted precisely. In this paper, we propose a routing method based on an ant colony optimization algorithm that takes into account these uncertainties. The result of simulation experiment shows that the proposed method can effectively find good routes under uncertainty.

Determination of Ship Collision Avoidance Path using Deep Deterministic Policy Gradient Algorithm (심층 결정론적 정책 경사법을 이용한 선박 충돌 회피 경로 결정)

  • Kim, Dong-Ham;Lee, Sung-Uk;Nam, Jong-Ho;Furukawa, Yoshitaka
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.58-65
    • /
    • 2019
  • The stability, reliability and efficiency of a smart ship are important issues as the interest in an autonomous ship has recently been high. An automatic collision avoidance system is an essential function of an autonomous ship. This system detects the possibility of collision and automatically takes avoidance actions in consideration of economy and safety. In order to construct an automatic collision avoidance system using reinforcement learning, in this work, the sequential decision problem of ship collision is mathematically formulated through a Markov Decision Process (MDP). A reinforcement learning environment is constructed based on the ship maneuvering equations, and then the three key components (state, action, and reward) of MDP are defined. The state uses parameters of the relationship between own-ship and target-ship, the action is the vertical distance away from the target course, and the reward is defined as a function considering safety and economics. In order to solve the sequential decision problem, the Deep Deterministic Policy Gradient (DDPG) algorithm which can express continuous action space and search an optimal action policy is utilized. The collision avoidance system is then tested assuming the $90^{\circ}$intersection encounter situation and yields a satisfactory result.

Numerical Analysis on the Transient Load Characteristics of Supersonic Steam Impinging Jet using LES Turbulence Model (LES 난류모델을 이용한 초음속 증기 충돌제트의 과도하중 특성에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Park, Won Man;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.77-87
    • /
    • 2018
  • In the case of high-energy line breaks in nuclear power plants, supersonic steam jet is formed due to the rapid depressurization. The steam jet can cause impingement load on the adjacent structures, piping systems and components. In order to secure the design integrity of the nuclear power plant, it is necessary to evaluate the load characteristics of the steam jet generated by high-energy pipe rupture. In the design process of nuclear power plant, jet impingement load evaluation was usually performed based on ANSI/ANS 58.2. However, U.S. NRC recently pointed out that ANSI/ANS 58.2 oversimplifies the jet behavior and that some assumptions are non-conservative. In addition, it is recommended that dynamic analysis techniques should be applied to consider transient load characteristics. Therefore, it is necessary to establish an evaluation methodology that can analyze the dynamic load characteristics of steam jet ejected when high energy pipe breaks. This research group has developed and validated the CFD analysis methodology to evaluate the transient behavior of supersonic impinging jet in the previous study. In this study, numerical study on the transient load characteristics of supersonic steam jet impingement was carried out and amplitude and frequency analysis of transient jet load was performed.

Numerical Analysis on the Characteristics of Supersonic Steam Jet Impingement Load (초음속 증기제트의 충돌하중 특성에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Park, Won Man;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • Structures, systems and components of nuclear power plants should be able to maintain safety even in the event of design-basis accidents such as high-energy line breaks. The high-pressure steam jet ejected from the broken pipe may cause damage to the adjacent structures. The ANSI/ANS 58.2 code has been adopted as a technical standard for evaluating the jet impingement load. Recently, the U.S. NRC pointed out the non-conservativeness of the ANSI/ANS 58.2, because it does not take into account the blast wave effect, dynamic behavior of the jet, and oversimplifies the shape and load characteristics of the supersonic steam jet. Therefore, it is necessary to improve the evaluation method for the high-energy line break accident. In order to evaluate the behavior of supersonic steam jet, an appropriate numerical analysis technique considering compressible flow effect is needed. In this study, numerical analysis methodology for evaluating supersonic jet impingement load was developed and verified. In addition, the conservativeness of the ANSI/ANS 58.2 model was investigated using the numerical analysis methodology. It is estimated that the ANSI jet model does not sufficiently reflect the physical behavior of under-expanded supersonic steam jet and evaluates the jet impingement load lower than CFD analysis result at certain positions.

Arthroscopic Iliopsoas Tenotomy of Iliopsoas Impingement after Total Hip Arthroplasty (고관절 전치환술 후 발생한 장요건 충돌의 관절경하 장요건 절단술)

  • Huh, Soon Ho;Choi, Byeong Yeol;Han, Sang Roc;Chung, Woo Chull
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.2
    • /
    • pp.125-133
    • /
    • 2021
  • Purpose: The clinical outcomes were investigated to determine if arthroscopic management is a useful method for 19 hips with iliopsoas tendon impingement (IPI) after total hip arthroplasty (THA). Materials and Methods: Eighteen patients (19 hips), who complained of groin pain and flexion pain that persisted after THA from September 2013 to December 2019, were the subjects of this investigation. The mean time to manifestation after THA was four months (range, 1-9 months) in patients of an average age of 60 years (range, 50-69 years). Thirteen out of 18 patients underwent THA using the direct anterior approach and five by the lateral approach. IPI was diagnosed by the medical history, physical examination, blood test, radiographic examination using X-ray and computed tomography, and topical injection therapy. All patients underwent arthroscopic treatment and a dynamic arthroscopic physical examination after exposure to the iliopsoas tendon revealed impingement. Tenotomy was then performed on the muscle portion through the total tendon portion. Symptoms and pain levels of preoperative, postoperative and follow-up period were investigated and compared. Results: The Western Ontario and McMaster Universities Osteoarthritis Index score decreased from an average of 58.4 (range, 40-88) before surgery to an average of 35.0 (range, 15-76) after surgery. Similarly, the visual analogue scale decreased from an average of 4.0 (range, 2-6) before surgery to an average of 1.4 (range, 0-4) after surgery. Sixteen patients (88.9%) showed pain relief and improvement in the straight leg raise test, and two patients showed postoperative muscle weakness and sustained pain. In the follow-up period, muscle weakness improved. One patient underwent arthroscopic iliopsoas tenotomy at the lesser trochanteric level but the symptoms persisted. The clinical symptoms were improved after one more tenotomy at the joint level. Conclusion: Arthroscopic iliopsoas tenotomy performed in patients with IPI after THA showed good clinical results.