• Title/Summary/Keyword: 경추 컴퓨터단층촬영

Search Result 7, Processing Time 0.101 seconds

A Measurement Method for Cervical Neural Foraminal Stenosis Ratio using 3-dimensional CT (3차원 컴퓨터단층촬영상을 이용한 신경공 협착률 측정방법)

  • Kim, Yon-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.975-980
    • /
    • 2020
  • Cervical neural foraminal stenosis is a very common spinal disease that affects a relatively large number of people of all ages. However, since imaging methods that quantitatively provide neural foraminal stenosis are lacking, this study attempts to present quantitative measurement results by reconstructing 3D computed tomography images. Using a 3D reconstruction software, the surrounding bones were removed, including the spinous process, transverse process, and lamina of the cervical spine so that the neural foramen were well observed. Using Image J, a region of interest including the neural foramen area of the 3D image was set, and the number of pixels of the neural foramen area was measured. The neural foramen area was calculated by multiplying the number of measured pixels by the pixel size. In order to measure the widest area of the neural foramen, it was measured between 40-50 degrees in the opposite direction and 15-20 degrees toward the head. The measured cervical neural foramen area showed consistent measurement values. The largest measured area of the right neural foramen C5-6 was 12.21 ㎟, and after 2 years, the area was measured to be 9.95 ㎟, indicating that 18% stenosis had progressed. Since 3D reconstruction using axial CT scan images, no additional radiation exposure is required, and the area of stenosis can be objectively presented. In addition, it is good to explain to patients with neural stenosis while viewing 3D images, and it is considered a good method to be used in the evaluation of the progression of stenosis and post-operative evaluation.

A Comparison for Cervical Neural Foraminal Area by 3-dimensional CT in Normal Adults (3차원 컴퓨터단층촬영상을 이용한 정상 성인의 경추 신경공 면적 비교)

  • Kim, Yon-Min
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.623-627
    • /
    • 2021
  • Cervical foraminal stenosis is a disease in which the nerves that pass from the spinal canal to the limbs are narrowed and the nerves are compressed or damaged. Due to the lack of an imaging method that provides quantitatively stenosis, this study attempted to evaluate the area of the cervical vertebrae by reconstructing a three-dimensional computed tomography image, and to determine the area of the neural foramen in normal adults to calculate the stenosis rate. Using a three-dimensional image processing program, the surrounding bones including the posterior spinous process, lateral process, and lamellar bones of the cervical vertebra were removed so that the neural foramen could be observed well. A region of interest including the neural foraminal area of the three-dimensional image was set using ImageJ, and the number of pixels in the neural foraminal area was measured. The neural foraminal area was calculated by multiplying the number of measured pixels by the pixel size. To measure the largest neural foraminal area, it was measured between 40~50 degrees in the opposite direction and 15~20 degrees toward the head. The average area of the right C2-3 foramen was 44.32 mm2, C3-4 area was 34.69 mm2, C4-5 area was 36.41 mm2, C5-6 area was 35.22 mm2, C6-7 area was 36.03 mm2. The average area of the left C2-3 foramen was 42.71 mm2, C3-4 area was 32.23 mm2, C5-6 area was 34.56 mm2, and C6-7 area was 31.89 mm2. By creating a reference table based on the neural foramen area of normal adults, the stenosis rate of patients with neural foraminal stenosis could be quantitatively calculated. It is expected that this method can be used as basic data for the diagnosis of cervical vertebral foraminal stenosis.

Ultrasound-guided Intervention in Cervical Spine (경추부 초음파 유도하 중재술)

  • Moon, Sang Ho
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.7 no.1
    • /
    • pp.49-66
    • /
    • 2014
  • Traditionally, cervical interventions have been performed under fluoroscopy. But radiation exposure is the major concern when obtaining fluoroscopic images and even under real-time fluoroscopy with contrast media or CT guidance, some cases of serious spinal cord injuries, cerebellar and brain stem infarction have been reported by unintentional intra-arterial injections especially during the transforaminal root blocks. Recently, the use of ultrasound-guided cervical interventions have increased. Ultrasound offers visualization of soft tissues including major neurovascular structures and also allows to observe the spread of injectant materials around the target structure. Ultrasound is radiation free, easy to use and the image can be performed continuously while the injectant is visualized in real-time, increasing the precision of injection. Importantly, ultrasound allows visualization of major nerves and vessels and thus leads to improve safety of cervical interventions by decreasing the incidence of injury or injection into nearby vasculature. We therefore reviewed to investigate the feasibility of performing cervical interventions under real-time ultrasound guidance.

  • PDF

Study of Computed Tomography Reconstruction Angle of Bony Stenosis of the Cervical Foramen (경추 신경공 골성 협착에서 CT 재구성 각도 연구)

  • Yon-Min, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.919-925
    • /
    • 2022
  • This study is an image reconstruction method after cervical CT scan. According to the oblique coronal reconstruction angle, i would like to suggest the reconstruction angle that can best express neural foraminal bony stricture. The angle created by drawing a line passing through the center of the spinal cord in the midsagittal plane of the cervical spine and the uncovertebral joint was measured. A line passing through the center of the spinal cord was drawn from the neural foramen, and the angle formed with the midsagittal plane was measured and compared. At the C4-5 level, the average was 9.2°, at the C5-6 level, the average was 9.9°, and at the C6-7 level, the average was 8.4°, the neural foraminal angle was measured to be larger than the uncovertebral joint angle. There was a statistically significant difference in mean (p<0.01). Also, it was found that the angle increased toward the lower cervical vertebrae. The angle between the neural foramen of the lower cervical vertebrae (C5-6, C6-7) and the center of the spinal cord is between 55 and 60°. Here, if the oblique coronal image is reconstructed to be 90°, the degree of neural foramen stenosis can be observed well. Because it is an image reconstruction using a conventional CT scan image, it does not receive additional radiation exposure. It is of great significance in diagnosing cervical neural foramen bony stenosis.

The variability of 6-D Skull Tracking(6DST) in Cyberknife for Bone metastasis patients (사이버나이프 6-D Skull Tracking의 유용성 평가)

  • Lee, Geon Ho;Bae, Sun Myeong;Song, Heung Kwon;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.41-47
    • /
    • 2018
  • Purpose : The purpose of this study is to evaluate the usefulness of 6 Dimensional Skull Tracking(6DST) in Cyberknife Stereotactic Body Radiation Therapy(SBRT) for the first and second cervical vertebrae(C1 and C2) metastasis. Methode and material : The Computed Tomography (Lightspeed VCT 64, General Electric Co. Waukesha, WI, USA) was used to acquire the CT images of the 9 patients with cervical vertebrae(C1 and C2) metastasis. Treatment plans for Xsight spine tracking and 6 Dimensional skull tracking were established with planning system (Multiplan system Version 4.6, Accuray, US). The results of XST and 6DST for each patient were analyzed with Microsoft Excel 2010. Result : The Maximum offsets of XST for C1 were 0.9 mm in Y(supero-inferior), 0.9 mm in Z(antero-posterior), 0.7 mm in X(left-right) direction, and rotations were and 1.0 degrees roll, 1.0 degrees pitch and 1.2 degrees yaw. The Maximum offsets of 6DST for C1 were 0.7 mm, 0.7 mm, 0.9 mm and $1.0^{\circ}$, $1.0^{\circ}$, $1.2^{\circ}$ for Y, Z, X and Roll, Pitch, Yaw. The Maximum offsets of XST and 6DST for C2 were 0.7 mm, 0.7 mm, 0.8 mm and $0.9^{\circ}$, $1.0^{\circ}$, $1.8^{\circ}$, and 0.9 mm, 0.7 mm, 0.9 mm and $0.9^{\circ}$, $0.9^{\circ}$, $1.0^{\circ}$ for Y, Z, X and Roll, Pitch, Yaw, respectively. Conclusion : XST and 6DST showed identical results for translations and rotations within the tolerance. It is possible to simplify the treatment time and procedure by using the 6DST. Therefore, 6DST is very useful methode with XST among the various tracking methods in Cyberknife for the patients with C1, C2 vertebral metastasis.

  • PDF

Effect of Facet Tropism on the Degeneration of the Cervical Facet Joint and Intervertebral Disc (경추의 후관절 퇴행과 추간판 퇴행에서 후관절 비대칭성의 영향)

  • Chung, Sung Soo;Park, Chan-Ho;Heo, Ki Seong
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.5
    • /
    • pp.413-418
    • /
    • 2021
  • Purpose: To investigate the effect of facet tropism on the degeneration of facet joint and intervertebral disc in the cervical spine. Materials and Methods: From January 2017 to December 2018, cervical tropism of 100 patients at the C5/6 level was analyzed retrospectively. In computed tomography (CT), the orientation and tropism of the facet joint with respect to the sagittal, coronal, and horizontal planes were measured. Regression of the facet joint in magnetic resonance imaging (MRI) and CT was assessed using a grading system. Intervertebral disc degeneration was assessed and divided into five grades on MRI. For the left and right asymmetry, a difference between two facet angles of less than 7° was classified as the control group, more than 7° was classified as the tropism group. Results: The mean age of the patients was 55.44±12.3 years (31-81 years) in the tropism group and 55.66±10.7 years (32-76 years) in the control group. In the tropism group, 32 were male and 18 were female. In the control group, 24 were male and 26 were female. Facet joint degeneration was identified in 24 patients (48.0%) in the tropism group and 14 patients (28.0%) in the control group, showing a significant difference. Intervertebral disc degeneration was identified in 29 patients (58.0%) in the tropism group and 17 patients (34.0%) in the control group, showing a significant difference. Multivariate revealed, tropism to be a factor that affected the facet joint and intervertebral disc degeneration. Conclusion: Facet joint and intervertebral disc degeneration occurred significantly in the tropism group, and tropism is a factor affecting the degeneration of facet joint and intervertebral disc in the C5/6 level.

Finite element analysis of the effects of mouthguard produced by combination of layers of different materials on teeth and jaw (다양한 물성을 혼용하여 제작된 구강보호장치가 치아 및 악골에 미치는 영향)

  • So, Woong-Seob;Lee, Hyun-Jong;Choi, Woo-Jin;Hong, Sung-Jin;Ryu, Kyung-Hee;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.4
    • /
    • pp.324-332
    • /
    • 2011
  • Purpose: The purpose of this study was to compare the stress distribution of teeth and jaw on load by differentiating property of materials according to each layer of widely used mouthguard. Materials and methods: A Korean adult having normal cranium and mandible was selected to examine. A customized mouthguard was constructed by use of DRUFOMAT plate and DRUFOMAT-TE/-SQ of Dreve Co. according to Signature Mouthguard system. The cranium was scanned by means of computed tomography with 1mm interval. It was modeled with CANTIBio BIONIX/Body Builder program and simulated and interpreted using Alter HyperMesh program. The mouthguard was classified as follows according to the layers. (1) soft guard (Bioplast)(SG) (2) hard guard (Duran)(HG) (3) medium guard (Drufomat)(MG) (4) soft layer + hard layer (SG + HG) (5) hard layer + soft layer (HG + SG) (6) soft layer + hard layer + soft layer (SG + HG + SG) (7) hard layer + soft layer + hard layer (HG + SG + HG) The impact locations on mandible were gnathion, the center of inferior border, and the anterior edge of gonial angle. And the impact directions were oblique ($45^{\circ}$). The impact load was 800 N for 0.1 sec. The stress distribution was measured at maxillary teeth, TMJ and maxilla. The statistics were conducted using Repeated ANOVA and in case of difference, Duncan test was used as post analysis. Results: In teeth and maxilla, the mouthguard contacting soft layer of mandibular teeth presented lowest stress measure and, in contrast, in condyle, the mouthguard contacting hard layer of mandibular teeth presented lowest stress measure. Conclusion: For all impact directions, soft layer + hard layer + soft layer, the mouthguard with three layers which the hard layer is sandwiched between two soft layers, showed relatively even distribution of stress in impact.