• Title/Summary/Keyword: 경유연료

Search Result 194, Processing Time 0.026 seconds

Separation of 2,6-dimethylnaphthalene in Dimethylnaphthalene Isomers Mixture by Crystallization Operation (결정화 조작에 의한 Dimethylnaphthalene 이성체 혼합물 중의 2,6-dimethylnaphthalene의 분리)

  • Kang, Ho-Cheol;Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.116-120
    • /
    • 2014
  • Light cycle oil (LCO), one of the by-products of the catalytic cracking gasoline manufacturing process, contains a lot of valuable aromatics. In particular, 2,6-dimethylnaphthalene (2,6-DMN) contained in LCO has been becoming important as the basic material of polyethylene naphthalate plastic and liquid crystal polymer, etc. If it were possible to separate and purify the valuable aromatic hydrocarbons (such as 2,6-DMN) from LCO, which have only been used as fuel mixed with heavy oil, it would be very meaningful in terms of the efficient use of resources. We investigated the high-purity purification of 2,6-DMN by the combined method of melt crystallization (MC) and solute crystallization (SC). The enriched DMN isomer mixtures (concentration of 2,6-DMN : 10.43%) recovered from LCO by distillation-extraction combination and the crystal recovered by MC used as raw materials of MC and SC, respectively. The solvent of SC used was a mixture of methanol and acetone (60 : 40 wt%). The crystal of 2,6-DMN with a high-purity of 99.5% was recovered by MC-SC combination. We confirmed that the MC-SC combination was one of the very useful combinations for the high-purity purification of 2,6-DMN contained in the enriched DMN isomer mixtures.

Effect of Growing Part Following Local Heating for Cherry Tomato on Temperature Distribution of Crop and Fuel Consumption (방울토마토 생장부 추종 국소난방이 군락 온도분포 및 연료소비에 미치는 영향)

  • Kwon, Jin Kyung;Kang, Geum Chun;Moon, Jong Pil;Lee, Tae Seok;Lee, Su Jang
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.217-225
    • /
    • 2015
  • Local heating system providing hot air locally to growing parts including shoot apex and flower cluster which were temperature-sensitive organs of cherry tomato was developed to reduce energy consumption for greenhouse heating without decline of crop growth. Growing part following local heating system was composed of double duct distributer which connected inner and outer ducts with hot air heater and winder which moved ducts up and down following growing parts with plant growth. Growing part local heating system was compared with conventional bottom duct heating system with respect to distributions of air and leaf surface temperatures according to height, growth characteristics and energy consumption. By growing part local heating, air temperature around growing part was maintained $0.9{\sim}2.0^{\circ}C$ higher than that of lower part of crop and leaf surface temperature was also stratified according to height. Investigations on crop growth characteristics and crop yield showed no statistically significant difference except for plant height between bottom duct heating and growing part local heating. As a result, the growing part local heating system consumed 23.7% less heating energy than the bottom duct heating system without decrease of crop yield.

Heating Effect by Electric Radiator in Greenhouse of Chrysanthemum Cultivation (전기 방열기가 국화재배온실의 난방에 미치는 영향)

  • Suh, Won-Myung;Leem, Jae-Woon;Kim, Young-Ju;Min, Young-Bong;Kim, Hyeon-Tae;Huh, Moo-Ryong;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.44 no.4
    • /
    • pp.79-85
    • /
    • 2010
  • An analysis in heating effects of an electric radiator located in a 1-2W type chrysanthemum (3 cultivars) cultivation greenhouse installed in Gyeongsang National University drew the following conclusions. During the experiment period, the highest, average, and the lowest outside temperatures were in the ranges of $-3.8{\sim}21.3^{\circ}C$, $-5.2{\sim}16.1^{\circ}C$ and $-12.5{\sim}14.4^{\circ}C$, respectively, and the average relative humidity inside and outside the greenhouses were in the ranges of 43.5~98.6% and 35.2~100%, respectively. From mid-December to early February, the lowest outside temperature was recorded as approximately $-5.0{\sim}-10.0^{\circ}C$, which showed that it tended to be relatively lower than the temperatures recorded at the Jinju Meteorological Observatory. During the night, the leaf temperature measured directly under the radiator tended to be higher by $2{\sim}3^{\circ}C$ than that those at the middle point of the radiator, or higher by a negligible amount. In the case of root zone temperature, it was found that there was almost no difference between temperatures of the part directly under and the middle point, and the time when the highest temperature of root zone and other highest temperatures took place showed that there was about a 2-hour delay phenomenon. The total electricity consumption, energy supply and total heating cost during the experiment period were 2,800 kWh, 2,408,000 kcal and 112,000 won, respectively. When diesel, a kind of fossil fuel, was used as heating oil, the total heating cost was around 224,500 won. It was estimated that the total heating cost could be reduced by around 50% if a radiator was used.

Assessment of the Effect of Dimethyl Ether (DME) Combustion on Lettuce and Chinese Cabbage Growth in Greenhouse (온실에서 상추와 배추를 이용한 DME 원료 난방 효율분석)

  • Basak, Jayanta Kumar;Qasim, Waqas;Khan, Fawad;Okyere, Frank Gyan;Lee, Yongjin;Arulmozhi, Elanchezhian;Park, Jihoon;Cho, Wonjun;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.293-301
    • /
    • 2019
  • The experiment was conducted to determine the performance of DME combustion gas when used as a fuel for DME burner for raising temperature and $CO_2$ concentration in greenhouse and also to examine its effects on chlorophyll content, and fresh and dry weight of lettuce and Chinese cabbage. DME-1 and DME-2 treatments consisted of average DME flow quantity in duct were $17.4m^3min^{-1}$ and $10.2m^3min^{-1}$ respectively to greenhouse-1 and greenhouse-2 and no DME gas was supplied to greenhouse-3 which was left as control (DME-3). DME supply times were $0.5hr\;day^{-1}$, $1hr\;day^{-1}$, $1:30hrs\;day^{-1}$ and $2hrs\;day^{-1}$ on week 1, 2, 3, and 4 respectively. Chlorophyll content and fresh and dry weight of lettuce and Chinese cabbage were measured for each treatment and analyzed through analysis of variance with a significance level of P<0.05. The result of the study showed that $CO_2$ concentration increased up to 265% and 174% and the level of temperature elevated $4.8^{\circ}C$ and $3.1^{\circ}C$ in greenhouse-1 and 2, respectively as compared to greenhouse-3 due to application of DME combustion gas. Although, the same crop management practices were provided in greenhouse-1, 2 and 3 at a same rate, the highest change (p<0.05) of chlorophyll content, fresh weight and dry weight were found from the DME-1 treatment, followed by DME-2. As a result, DME combustion gas that raised the level of temperature and $CO_2$ concentration in the greenhouse-1 and greenhouse-2, might have an effect on growth of lettuce and Chinese cabbage. At end of experiment, the highest fresh and dry weight of lettuce and Chinese cabbage were measured in greenhouse-1 and followed by greenhouse-2. Similarly chlorophyll content of greenhouse-1 and greenhouse-2 were more compared to greenhouse-3. In general, DME was not producing any harmful gas during its combustion period, therefore it can be used as an alternative to conventional fuel such as diesel and liquefied petroleum gas (LPG) for both heating and $CO_2$ supply in winter season. Moreover, endorsed quantify of DME combustion gas for a specified crop can be applied to greenhouse to improve the plant growth and enhance yield.