• Title/Summary/Keyword: 경시적 자료

Search Result 104, Processing Time 0.027 seconds

A longitudinal study for child aggression with Korea Welfare Panel Study data (한국복지패널 자료를 이용한 아동기 공격성에 대한 경시적 자료 분석)

  • Choi, Nayeon;Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1439-1447
    • /
    • 2014
  • Most of literatures on Korean child aggression are based on using the cross-sectional data sets. Although there is a related study with a longitudinal data set, it is assumed that the data sets measured repeatedly in the longitudinal data are mutually independent. A longitudinal data analysis for Korean child aggression is then necessary. This study is to analyze the effect of child development outcomes including academic achievement, self-esteem, depression anxiety, delinquency, victimization by peers, abuse by parents and internet using time on child aggression with Korea Welfare Panel Study data observed three times between 2006 and 2012. Since Korea Welfare Panel Study data have missing values, the missing at random is assumed. The linear mixed effect model and the restricted maximum likelihood estimation are considered.

Estimation of the joint conditional distribution for repeatedly measured bivariate cholesterol data using nonparametric copula (비모수적 코플라를 이용한 반복측정 이변량 자료의 조건부 결합 분포 추정)

  • Kwak, Minjung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.689-700
    • /
    • 2016
  • We study estimation and inference of the joint conditional distributions of bivariate longitudinal outcomes using regression models and copulas. For the estimation of marginal models we consider a class of time-varying transformation models and combine the two marginal models using nonparametric empirical copulas. Regression parameters in the transformation model can be obtained as the solution of estimating equations and our models and estimation method can be applied in many situations where the conditional mean-based models are not good enough. Nonparametric copulas combined with time-varying transformation models may allow quite flexible modeling for the joint conditional distributions for bivariate longitudinal data. We apply our method to an epidemiological study of repeatedly measured bivariate cholesterol data.

A longitudinal data analysis for child academic achievement with Korea welfare panel study data (경시적 자료를 이용한 아동 학업성취도 분석)

  • Lee, Naeun;Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Longitudinal data of Korean child academic achievement have been used to find the significant exploratory variables under the assumption of independent repeated measured data. Using the exploratory variables in previous research works, we analyze the linear mixed model incorporating the fixed and random effects for child academic achievement to detect the significant exploratory variables. Korea welfare panel study data observed three times between 2006 and 2012 by additional survey for children. The child academic achievement is evaluated by the sum of academic achievements of Korean, English and Mathematics. We also investigate the multicollinearity and the missing mechanism and select some popular correlation matrices to analyze the linear mixed model.

Derivation of a benchmark dose lower bound of lead for attention deficit hyperactivity disorder using a longitudinal data set (경시적 자료의 주의력 결핍 과잉행동 장애를 종점으로 한 납의 벤치마크 용량 하한 도출)

  • Lee, Juhyung;Kim, Si Yeon;Ha, Mina;Kwon, Hojang;Kim, Byung Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1295-1309
    • /
    • 2016
  • This paper is to reproduce the result of Kim et al. (2014) by deriving a benchmark dose lower bound (BMDL) of lead based on the 2005 cohort data set of Children's Health and Environmental Research (CHEER) data set. The ADHD rating scales in the 2005 cohort were not consistent along the three follow-ups since two different ADHD rating scales were used in the cohort. We first unified the ADHD rating scales in the 2005 cohort by deriving a conversion formula using a penalized linear spline. We then constructed two linear mixed models for the 2005 cohort which reflected the longitudinal characteristics of the data set. The first model introduced the random intercept and the random slope terms and the second model assumed the first order autoregressive structure of the error term. Using these two models, we derived the BMDLs of lead and reconfirmed the "regression to the mean" nature of the ADHD score discovered by Kim et al. (2014). We also noticed that there was a definite difference between the sampling distributions of the two cohorts. As a result, taking this difference into account, we were able to obtain the consistent result with Kim et al. (2014).

Derivation of benchmark dose lower limit of lead for ADHD based on a longitudinal cohort data set (동집단 자료의 주의력 결핍 과잉행동 장애를 종점으로 한 납의 벤치마크 용량 하한 도출)

  • Kim, Byung Soo;Kim, Daehee;Ha, Mina;Kwon, Ho-Jang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.987-998
    • /
    • 2014
  • The primary purpose of this paper is to derive a benchmark dose lower limit (BMDL) of lead for the attention deficit/hyperactive disorder (ADHD) based on a longitudinal cohort data set which is referred to as CHEER data set. The CHEER data were recently recruited from the Ministry of Environment of S. Korea to investigate the effect of environment on children's health We first confirm the correlation of ADHD with the blood lead level using a linear mixed effect model. We report from the longitudinal characteristic of CHEER data that ADHD scores tend to have "regression to the mean". A dose-response curve of blood lead level with ADHD being the end point is derived and from this dose-response curve a few BMDLs are derived based on corresponding assumptions on the benchmark region.

A Bayesian zero-inflated negative binomial regression model based on Pólya-Gamma latent variables with an application to pharmaceutical data (폴랴-감마 잠재변수에 기반한 베이지안 영과잉 음이항 회귀모형: 약학 자료에의 응용)

  • Seo, Gi Tae;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.2
    • /
    • pp.311-325
    • /
    • 2022
  • For count responses, the situation of excess zeros often occurs in various research fields. Zero-inflated model is a common choice for modeling such count data. Bayesian inference for the zero-inflated model has long been recognized as a hard problem because the form of conditional posterior distribution is not in closed form. Recently, however, Pillow and Scott (2012) and Polson et al. (2013) proposed a Pólya-Gamma data-augmentation strategy for logistic and negative binomial models, facilitating Bayesian inference for the zero-inflated model. We apply Bayesian zero-inflated negative binomial regression model to longitudinal pharmaceutical data which have been previously analyzed by Min and Agresti (2005). To facilitate posterior sampling for longitudinal zero-inflated model, we use the Pólya-Gamma data-augmentation strategy.

Hurdle Model for Longitudinal Zero-Inflated Count Data Analysis (영과잉 경시적 가산자료 분석을 위한 허들모형)

  • Jin, Iktae;Lee, Keunbaik
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.923-932
    • /
    • 2014
  • The Hurdle model can to analyze zero-inflated count data. This model is a mixed model of the logit model for a binary component and a truncated Poisson model of a truncated count component. We propose a new hurdle model with a general heterogeneous random effects covariance matrix to analyze longitudinal zero-inflated count data using modified Cholesky decomposition. This decomposition factors the random effects covariance matrix into generalized autoregressive parameters and innovation variance. The parameters are modeled using (generalized) linear models and estimated with a Bayesian method. We use these methods to carefully analyze a real dataset.

Rank Tracking Probabilities using Linear Mixed Effect Models (선형 혼합 효과 모형을 이용한 순위 추적 확률)

  • Kwak, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.241-250
    • /
    • 2015
  • An important scientific objective of longitudinal studies involves tracking the probability of a subject having certain health condition over the course of the study. Proper definitions and estimates of disease risk tracking have important implications in the design and analysis of long-term biomedical studies and in developing guidelines for disease prevention and intervention. We study in this paper a class of rank-tracking probabilities to describe a subject's conditional probabilities of having certain health outcomes at two different time points. Linear mixed effects models are considered to estimate the tracking probabilities and their ratios of interest. We apply our methods to an epidemiological study of childhood cardiovascular risk factors.

Review and discussion of marginalized random effects models (주변화 변량효과모형의 조사 및 고찰)

  • Jeon, Joo Yeong;Lee, Keunbaik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1263-1272
    • /
    • 2014
  • Longitudinal categorical data commonly occur from medical, health, and social sciences. In these data, the correlation of repeated outcomes is taken into account to explain the effects of covariates exactly. In this paper, we introduce marginalized random effects models that are used for the estimation of the population-averaged effects of covariates. We also review how these models have been developed. Real data analysis is presented using the marginalized random effects.