• Title/Summary/Keyword: 경사 부하

Search Result 1,152, Processing Time 0.028 seconds

A cephalometric investigation on the craniofacial configurations of Class ll division 1 and 2 in Korean (한국인 II급 1류 및 2류 부정교합자 두개안면형태의 차에 대한 측모두부방사선계측학적 연구)

  • Kang, Jong-Won;Lee, Young-Jun;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.32 no.3 s.92
    • /
    • pp.195-207
    • /
    • 2002
  • Numerous studies have revealed the similarities and discrepancies in two divisions of class II malocclusion, since these malocclusion groups have been postulated to be disparate criterion, much as classified under one diagnostic umbrella. This study was undertaken to describe the craniofacial configurations of class II division 1 and 2, and consequently to discriminate the morphologic differences between the two malocclusion groups in Korean sample. Lateral headfilms of 34 class H division 1 and 29 division 2 were employed, while those of 142 adults of normal occlusion served as a control. The landmarks were digitized and 26 variables were statistically analyzed for one way ANOVA. 1. There manifested no statistically significant difference in maxillary position anteroposteriorly. Normal occlusion group exhibited most anteriorly positioned mandible, whereas class II division 1 showed the most retroposition. Class II division 1 disclosed clockwise rotation tendency of mandible, which resulted in position of the chin Posteriorly. 2. Class II division 1 showed greater in SN to MP, SN to PP significantly than other groups. 3. Class II division 2 showed smaller genial angle and larger mandibular body length than other groups. 4. Class II division 1 revealed greater anterior lower face height than other groups, whereas division 2 dictated significantly greater posterior face height. 5. Class II division 2 expressed the most retroclined lower incisor, while division 1 manifested the most proclination. The largest interincisal angle resided in Class II division 2 group. There were no significant differences in upper molar position anteroposteriorly.

Impact of Physical and Vegetation Patterns on Parks Environment: A Case Study of Gusan Neighborhood Park, South Korea (도심산림녹지의 식생 및 물리적 구조에 따른 숲 내부 미기상 변화 연구)

  • Kim, Jeong-Ho;Choi, Won-Jun;Lee, Sang-Hoon;Lee, Myung-Hun;Yoon, Yong-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.5
    • /
    • pp.425-435
    • /
    • 2020
  • This study aims to investigate the impact of the physical structure, such as altitude, slope gradient, slope direction, and topographical structure, and the vegetation pattern, such as existing vegetation, diameter of breast height (DBH), and crown density, on climate. The analysis results showed the significant difference in relative humidity, wind speed, and solar radiation at varying altitudes, the significant difference in all climate factors except for the wind speed at varying slope gradient, and significant difference in temperature and relative humanity at varying slope direction. The topographic structures were divided into valleys, slopes, and ridges. They were found to differ in relative humidity. However, the differences between constant trends and types were found to be insignificant concerning temperature, wind speed, and solar radiation. Significant differences in temperature, relative humidity, and wind speed were recorded with changing existing vegetation. The DBH showed a significant difference in temperature, wind speed, and solar radiation. The crown density showed a significant difference in temperature and solar radiation. The result of the relationship analysis for the analysis of the effect of vegetation pattern and physical structure on the meteorological environment showed that temperature was affected by slope gradient, slope direction, DBH, and crown density. The relative humidity was correlated with the altitude, slope gradient, slope direction, and topological structure in physical structure and the existing vegetation and crow density in vegetation pattern. The wind speed was correlated with the altitude, existing vegetation, and DHB, and the solar radiation was correlated with the slope gradient, DHG, and crown density. The crown density was the most overall significant factor in temperature, relative humidity, and solar radiation, followed by the slope gradient. DBH was also found to be highly correlated with temperature and solar radiation and significantly correlated with wind speed, but there was no statistically significant correlation with relative humidity.

Experimental study on the ground subsidence due to the excavation of a shallow tunnel (경사지반에서 얕은터널의 굴착에 따른 지표침하에 대한 실험적 연구)

  • Park, Chan Hyuk;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.761-778
    • /
    • 2017
  • The need of the underground space for the infrastructures in urban area is increasing, and especially the demand for shallow tunnels increased drastically. It is very important that the shallow tunnel in the urban area should fulfill not only its own safety conditions but also the safety condition for the adjacent structures and the surrounding sub-structure. Most of the studies on the behavior of shallow tunnels concentrated only on their behaviors due to the local deformation of the tunnel, such as tunnel crown or tunnel sidewall. However, few studies have been performed for the behavior of the shallow tunnel due to the deformation of the entire tunnel. Therefore, in this study the behavior of the surrounding ground and the stability caused by deformation of the whole tunnel were studied. For that purpose, model tests were performed for the various ground surface slopes and the cover depth of the tunnel. The model tunnel (width 300 mm, height 200 mm) could be simulationally deformed in the vertical and horizontal direction. The model ground was built by using carbon rods of three types (4 mm, 6 mm, 8 mm), in various surface slopes and cover depth of the tunnel. The subsidence of ground surface, the load on the tunnel crown and the sidewall, and the transferred load near tunnel were measured. As results, the ground surface subsided above the tunnel, and its amount decreased as the distance from the tunnel increased. The influence of a tunnel ceased in a certain distance from the tunnel. At the inclined ground surface, the wider subsidence has been occurred. The loads on the crown and the sidewall were clearly visible, but there was no effect of the surface slope at a certain depth. The load transfer on the adjacent ground was larger when the cover depth (on the horizontal surface) was lager. The higher the level (on the inclined surface), the wider and smaller it appeared. On the shallow tunnel under inclined surface, the transfer of the ambient load on the tunnel sidewall (low side) was clearly visible.

Slopes Risk Assessment Techniques through Pattern Classification (패턴분류를 통한 산지사면의 위험도 평가 기법)

  • Kim, Min-Seub;Kim, Jin-Young
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.189-199
    • /
    • 2015
  • Our country's leading granite weathered soil of the ground slope failures that occur in cutting slope most cases, it does not require in-depth to the shear strength most of the surface layer is affected by weathering (1~2 m) at a shallow depth close to the ground, it is important to identify the reliability. Based on the result obtained in actual field investigation, the field slope type was classified by each type of wedge slope, Infinite slope, finite slope -I and finite slope -II, and the slope stability was examined respectively. In addition, using the numerical analysis results, the relationship between the slope inclination angle and safety factor was analyzed and it tried to offer basic data to which the stability in the field slope was able to be estimated by analyzing the safety factor change of the slope according to the slope type. In this study, classified into four types of natural slope, safety factor estimation method by slope types is proposed through the numerical analysis. However, some limit exists in generalizing in this research because it does not test various case studies. Therefore, the case study of a wide range of various sypes to assess the safety of various types slope can be made, accommodate a wide range of field conditions reasonable risk evaluation criteria may be derived.

Experimental Study on Pull Out Characteristics of Adhesive Anchor (부착식 앵커의 인발 특성에 관한 실험적 연구)

  • Yoo, Sung Won;Jung, Sang-Hwa;Kwak, Ki-Suk;Lee, Ju-Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.555-563
    • /
    • 2006
  • Recently, many bridges become not only functionally obsolete of bridge deck due to inadequate width but also structurally deficient of substructure due to erosion. In these cases, widening is almost always more economical than complete replacement, and therefore there is a need to make available the results of research and field experience pertaining to the widening of bridge substructure. But, an experimental study for the guarantee of unification between existing and new substructure with adhesive anchor is so insufficient that the development of adhesive anchor system for the unification should be settled promptly. The purpose of the present study is to explore pull out and shear characteristics of adhesive anchor system. For this purpose, several series of concrete specimens have been tested. Major test variables were the bonded length, anchor diameter and anchor slope. The pull out strength, bond stress and shear strength of adhesive faces were measured for the specimens. The present study indicates that the pull out strength increased with more bonded length and more anchor diameter, and that the bond stress decreased with more bonded length and more anchor diameter. The pull out strength and the bond stress increases with more anchor slope and it is considered that the slope of $5^{\circ}$ was more efficient. From the shear tests, it is supposed that anchor diameters more than D19 was proper to the adhesive anchor. Finally, it is expected that both experimental data in these tests and further study including mock-up tests will contribute to the establishment of the unification between existing and new substructure with adhesive anchor.

An experimental study on the behavior of tunnel excavated in a jointed mass by two-stage excavation (절리 지반에서 2단계로 굴착되는 터널의 거동특성에 대한 실험적연구)

  • Park, Seung-Jun;Kim, Dong-Gab;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.303-314
    • /
    • 2004
  • This study is intended to investigate the geotechnical behavior of jointed mass on tunnel excavation experimentally. Laboratory test were conducted in various conditions of distance from joint to tunnel and in-situ stress ratio ($K_0$). In case, the ground around the tunnel that has the joint angle $90^{\circ}$ generate the greatest influence in crown and far shoulder from joint. If the in-situ stress ratio is low, tangential stress of side wall that is opposite side of the joint is increased more than in crown. Otherwise in case, joint angle $45^{\circ}$, the generated compress stress is found out that left side of the tunnel of near the joint has influence on stability of the tunnel about 3 times than non-jointed rock.

  • PDF

Estimation of Local Scour Depth in Gravel-river Bend (자갈하천 만곡부의 국부세굴심 산정기법)

  • Cho, Jaewoong;Park, Sang Deog
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.393-393
    • /
    • 2016
  • 자갈하천 만곡부에서 하상의 세굴심을 파악하는 것은 하천의 수공구조물 안전설계를 위해 고려할 중요한 요소이다. 모래하천에서 만곡부의 국부세굴에 대한 연구는 활발하게 이루어지고 있으나 자갈하천 만곡부의 세굴심에 대한 연구는 부족한 실정이다. 만곡부 세굴심은 하천경사, 하상재료, 유로형태 등에 따라서 다르다. 따라서 하천 만곡부의 세굴심을 산정하기 위한 공식들은 지배적인 독립변수로 사용되고 있는 유량, 유속 또는 Froude수, 수심, 하상재료의 직경 등에 따라 분류할 수 있다. 세굴심과 단위폭당 유량의 관계는 Lacey (1930), Abbott (1963), Blench (1969), Neill (1973)의 공식이 있다. 만곡부에 접근하는 상류부에서 Froude 수와 만곡부의 세굴심의 관계는 Liu et. al (1961), Zeller (1981), Mussetter (1994)의 공식이 있다. 또한 만곡부의 수심-세굴심 또는 하상재료의 직경과 세굴심의 관계를 나타내는 공식이 USBR, USACE, FHA 등에서 사용되고 있다. 하상재료와 세굴의 관계공식은 하천 만곡부에서 세굴심은 하상재료에 따라 발생될 수 있는 최대 크기가 정해져 있다고 본 것이다. 하상재료는 하천의 유사이송능력과 유역의 유사공급능력을 반영하기 때문에 하천의 수리특성을 나타낼 수 있는 변수이나 하상재료의 평균입경 특성에 영향을 미치는 수리학적인 요인들이 너무 많고 간접적이라는 한계가 있다. 자갈하상 하천에서 Mussetter, Liu, Abbott 공식은 세굴발생에 대한 한계조건을 반영하지 못하고 대부분 세굴심을 과대 추정한다. 자갈하천에서 Zeller 및 Lacey 공식과 USACE 방법에 의한 세굴심은 적용성이 있다고 볼 수 있는 유량조건이 있다. 이같이 대부분 세굴심 공식이 모래하천에서 개발되었기 때문에 자갈하천의 만곡부 세굴심을 산정하기 위해서는 하상재료의 특성이 반영되어야 한다.

  • PDF

Delineation of internal heterogeneities of Geum River point bar deposits in Buyeo area using GPR Data (지하 투과 레이다 조사를 통한 부여 지역 금강변의 충적 대수층 내부 불균질성 파악)

  • Rhee, Chul-Woo;Kim, Hyoung-Soo;Lee, Kyung-Joo
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.337-344
    • /
    • 2002
  • The alluvial deposits along meandering rivers can be used as an artificial aquifer for infiltration of river waters. Internal heterogeneity of the alluvial deposits is a prerequisite information for the development of alluvial groundwater because vortical and lateral movement of alluvial ground water depends on the internal heterogeneity The internal heterogeneity due to variations in channel behavior can be delineated using GPR survey, GPR profiles for the point bar deposits near Buyeo county reveals two different stratigraphic units: the lower inclined heterogeneous strata and the upper horizontally stratified strata. The upper unit is largely indicative of vertical accumulation by overbank floods within a floodplain, whereas the lower one represents typical point bar deposits formed by lateral accretion. The stratigraphic variation in the heterogeneity shows that GPR survey is a useful and necessary investigation method for the development of alluvial ground water.

  • PDF

The Decision of Pyeunghwa Dam's Discharge Rate Considering Hwachun Dam Stage (화천댐수위를 고려한 평화의 댐 방류량 산정방법)

  • Lee, Eul-Rae;Yoo, Yang-Soo;Park, Myung-Ky
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1001-1005
    • /
    • 2005
  • 현재 평화의 댐 배수터널은 직경 10m 원형 x 4 련의 콘크리트 라이닝 터널로 구성되어 있다. 배수터널내의 흐름특성은 터널직경, 모양, 터널결사, 조도계수 및 입구부와 출구부의 기하학적 성질, 터널의 상류수위와 하류수위 등에 따라 개수로 혹은 관수로의 흐름특성이 나타난다. 따라서 터널내의 흐름은 각각의 경우에 따른 수리학적 해석이 달리 적용되어진다. 화천댐의 수위와 연계하여 평화의 댐 방류량을 산정하기 위해서는 상$\cdot$하류 수위에 따른 관로내의 흐름특성이 다양하게 변화하는 바 이에 따른 수리학적 검토가 필요하게 된다. 본 연구에서는 배수터널의 흐름별로 계산 방법을 도출하였으며 상$\cdot$하류의 수위와 단면형태를 고려하여 먼저 배수터널내의 흐름특성을 규명한 다음 그에 합당한 유량산정공식으로 배수터널 내에서 유하하는 흐름의 유량값을 산정할 수 있는 방법을 제시하였다. 본 검토에서 구축된 계산절차에 의해서 평화의 댐 수위가 급격하게 변화하는 시점인 2002년 1월, 6월 그리고 2004년 8월 시점의 평화의 댐, 화천댐의 수위를 검토하여 방류량을 산정하였다. 평화의 댐에서는 방류량을 결정하기 위한 계측시설이 없기 때문에 가장 가까운 하류부의 화천댐 유입량과 비교를 수행하게 된다. 강우가 지속되면서 화천댐의 유입량이 증가를 하게 되는데 화천댐 유역의 국지적인 호우에 따른 유입량으로 판단되는 부분을 제외하고는 화천댐 유입량과 계산된 평화의 댐 방류량에서 유사한 결과를 도출하고 있었다. 이와 같은 산정법을 바탕으로 하여 강우에 따른 평화의 댐 방류량을 정확히 산정함으로서 댐유역의 비상사태 발생 또는 임남댐의 방류 등을 추정하는데 크게 기여할 수 있을것으로 판단된다.2$으로 나타났다. 밸브 개폐도가 $100\%$일 때가 밸브를 $60\%$$80\%$ 개폐시켰을 때보다 $0.3kg/cm^2,\;0.29kg/cm^2$ 낮게 나타나 밸브를 전체 개방 했을 때 관로내의 수압이 상수설계기준에 적합한 수압을 유지함을 알 수 있다. 상수관로 설계 기준에서는 관로내 수압을 $1.5\~4.0kg/cm^2$으로 나타내고 있는데 $6kg/cm^2$보다 과수압을 나타내는 경우가 $100\%$로 밸브를 개방하였을 때보다 $60\%,\;80\%$ 개방하였을 때가 더 빈번히 발생하고 있으므로 대상지역의 밸브 개폐는 $100\%$ 개방하는 것이 선계기준에 적합한 것으로 나타났다. 밸브 개폐에 따른 수압 변화를 모의한 결과 밸브 개폐도를 적절히 유지하여 필요수량의 확보 및 누수방지대책에 활용할 수 있을 것으로 판단된다.8R(mm)(r^2=0.84)$로 지수적으로 증가하는 경향을 나타내었다. 유거수량은 토성별로 양토를 1.0으로 기준할 때 사양토가 0.86으로 가장 작았고, 식양토 1.09, 식토 1.15로 평가되어 침투수에 비해 토성별 차이가 크게 나타났다. 이는 토성이 세립질일 수록 유거수의 저항이 작기 때문으로 생각된다. 경사에 따라서는 경사도가 증가할수록 증가하였으며 $10\% 경사일 때를 기준으로 $Ro(mm)=Ro_{10}{\times}0.797{\times}e^{-0.021s(\%)}$로 나타났다.천성 승모판 폐쇄 부전등을 초래하는 심각한 선천성 심질환이다. 그러

  • PDF

A Biomechanical Research for Incorates a Rounded Sole with a 20 Degree Heel Lift in Functional Shoes (후족부 경사각을 이용한 신발에 관한 생체역학적 연구)

  • Lee, Joong-Sook;Park, Sang-Kyoon;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.135-142
    • /
    • 2008
  • The primary innovation in the new footwear is a heel lift of $20^{\circ}$ which is proposed to improve posture and balance as well as increase shock absorption. The purpose of this research was to compare the movement, forces and muscle activity between the new shoes and standard athletic footwear during standing and walking. Nine healthy subjects participated in this study. Data were collected at two times: 1) when the subjects first wore the new walking shoes and 2) after the subjects wore the shoes for 6 hours a day for two weeks. 1. During standing. the movement of the center of pressure is increased approximately 60% when wearing the new walking shoes compared to a control shoe. 2. During walking. the ankle is approximately $14^{\circ}$ more dorsiflexed during landing due to the 200heel lift in the new walking shoes. The knee compensates slightly by flexing approximately $2^{\circ}$ more. 3. As a result of the changes in the walking movement, the ground reaction forces are applied more quickly, although the peak magnitudes do rut change. 4. The resultant joint moments at the ankle and knee joints decrease from 21-60% with the largest reductions occurring during landing. In conclusion, the new footwear change the movement, showing a more upright stance. Also, the new footwear reduce joint loading at the joint during the landing and weight acceptance phase of walking. However, the influence of the new footwear is immediate and does rut change after wearing the shoes for two weeks.