• Title/Summary/Keyword: 경로추종 운동제어

Search Result 14, Processing Time 0.032 seconds

A Study on Performance of Path Tracking Controller Using Changes in Center of Gravity of Spherical UAV (무게중심 변화를 이용한 구형무인비행체 경로 추종 제어기 성능에 관한 연구)

  • Choe, Yun-Ho;Yang, Seong-Uk;Yang, Jun-Mo;Kim, Bong-Gyun;Lee, Sang-Cheol
    • 한국항공운항학회:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.50-54
    • /
    • 2015
  • 구형무인비행체는 다중 모터를 이용한 무인항공기에 비행 소형화, 경량화, 경제화 등의 장점을 가지고 있다. 본 논문에서는 구형무인비행체의 경로 추종을 위한 제어기 설계 및 성능에 대한 내용을 다루고 있다. 먼저 구형무인비행체의 운동방정식이 제어기 설계를 위해 유도되었고, 유도된 운동방정식을 이용해 경로 추종 제어기를 설계하였다. 구형무인비행체의 자세제어는 무게중심을 변화하는 방법을 사용하였다. 요구 경로를 설정하여 설계된 제어기의 경로 추종 성능을 MATLAB 시뮬레이션을 통해 확인하였다. 시뮬레이션 결과, 제시된 제어기가 설정된 경로를 추종하고 있음을 확인하였다.

  • PDF

Autonomous Parking of a Model Car with Trajectory Tracking Motion Control using ANFIS (ANFIS 기반 경로추종 운동제어에 의한 모형차량의 자동주차)

  • Chang, Hyo-Whan;Kim, Chang-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.69-77
    • /
    • 2009
  • In this study an ANFIS-based trajectory tracking motion control algorithm is proposed for autonomous garage and parallel parking of a model car. The ANFIS controller is trained off-line using data set which obtained by Mandani fuzzy inference system and thereby the processing time decreases almost in half. The controller with a steering delay compensator is tuned through simulations performed under MATLAB/Simulink environment. Experiments are carried out with the model car for garage and parallel parking. The experimental results show that the trajectory tracking performance is satisfactory under various initial and road conditions

Trajectory Tracking Control for A Wheeled Mobile Robot (모바일 로봇의 경로 추종 제어)

  • Kim, Jin-Hwan
    • 전자공학회논문지 IE
    • /
    • v.46 no.4
    • /
    • pp.73-77
    • /
    • 2009
  • This paper presents the trajectory tracking control for mobile robot. The designed controller consists of kinematic and dynamic controller. Kinematic controller has two gains and it reduces the trial time for gain setting as compared convectional controller with three gains. Dynamic controller includes the compensation of friction and disturbance. It can improve the performance of the trajectory tracking under the various environment. Simulation results shows that the proposed controller has a stable performance.

Development & Test of A Small-Sized Autonomous Underwater Vehicle "BOTO" (소형 자율무인잠수정 "BOTO"의 개발 및 실험)

  • Byun, Seung-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.103-109
    • /
    • 2012
  • Samsung Thales has developed a small-sized autonomous underwater vehicle "BOTO" verified by a mathematical model simulation. The hydrodynamic coefficients and drag force were experimented at circulating water channel for validating cruising performance of the AUV. Based on the mathematical model, we simulated turning radius and way-point tracking on horizontal plane using way-point tracking algorithm. In this paper we introduce the vehicle system and the sea trial test results will be shown.

Path Tracking Motion Control using Fuzzy Inference for a Parking-Assist System (퍼지 추론을 이용한 주차지원 시스템의 경로추종 운동제어)

  • Kim, Seung-Ki;Chang, Hyo-Whan;Kim, Chang-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • A parking-assist system is defined that a driver adjusts vehicle velocity through brake pedal operation and parking-assist system controls the motion of the vehicle to follow a collision-free path. In this study, a motion control algorithm using Fuzzy inference is proposed to track a maneuvering clothoid parallel path. Simulations are performed under SIMULINK environments using MATLAB and CarSim for a vehicle model. As the vehicle model in MATLAB a bicycle model is used including lateral dynamics. The simulation results show that the path tracking performance is satisfactory under various driving and initial conditions.

Research on the Design of Helicopter Nonlinear Optimal Controller using SDRE Technique (SDRE 기법을 이용한 헬리콥터 비선형 최적제어기 설계 연구)

  • Yang, Chang-Deok;Kim, Min-Jae;Lee, Jung-Hwan;Hong, Ji-Seung;Kim, Chang-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1152-1162
    • /
    • 2008
  • This paper deals with the State-Dependent Riccati Equation (SDRE) technique for the design of helicopter nonlinear flight controllers. Since the SDRE controller requires a linear system-like structure for nonlinear motion equations, a state-dependent coefficient (SDC) factorization technique is developed in order to derive the conforming structure from a general nonlinear helicopter dynamic model. Also on-line numerical methods of solving the algebraic Riccati equation are investigated to improve the numerical efficiency in designing the SDRE controllers. The proposed method is applied to trajectory tracking problems of the helicopter and computational tips for a real time application are proposed using a high fidelity rotorcraft mathematical model.

Development of Sailing Algorithm for Ship Group Navigation System (선박 그룹항해시스템의 항법 알고리즘 개발)

  • Wonjin, Choi;Seung-Hwan, Jun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.554-561
    • /
    • 2022
  • Technology development related to maritime autonomous surface ships (MASS) is actively progressing around the world. However, since there are still many technically unresolved problems such as communication, cybersecurity, and emergency response capabilities, it is expected that it will take a lot of time for MASS to be commercialized. In this study, we proposed a ship group navigation system in which one leader ship and several follower ship are grouped into one group. In this system, when the leader ship begins to navigate, the follower ship autonomously follows the path of the leader ship. For path following, PD (proportional-derivative) control is applied. In addition, each ship navigates in a straight line shape while maintaining a safe distance to prevent collisions. Speed control was implemented to maintain a safe distance between ships. Simulations were performed to verify the ship group navigation system. The ship used in the simulation is the L-7 model of KVLCC2, which has related data disclosed. And the MMG (Maneuvering Modeling Group) standard method proposed by the Japan Society of Naval Architects and Ocean Engineering (JASNAOE) was used as a model of ship maneuvering motion. As a result of the simulation, the leader ship navigated along a predetermined route, and the follower ship navigated along the leader ship's path. During the simulation, it was found that the three ships maintained a straight line shape and a safe distance between them. The ship group navigation system is expected to be used as a navigation system to solve the problems of MASS.

A Study on Translational Motion Control in Integrated Control System for Ship Steering Motion (선박 조종운동을 위한 통합제어시스템에서의 이동운동제어에 관한 연구)

  • Woo, Ju-Eun;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.32-44
    • /
    • 2015
  • In general, a series of ship steering motion is represented by the combination of translational motion and rotational motion of the ship. Especially, special-functioned ships such as large-scale cruises, ships for installing underwater optical cable, and diver ships must be able to reveal only a translational motion without the change of orientation. In this paper, a method to comprise an integrated control system based on the joystick as a command instrument for translational motion control is suggested. In order to realize the translational motion control system, several algorithms are suggested including the velocity command generation, the selection of motional variables, and the generation and tracking of reference inputs for the selected motional variables. A simulation bench is composed to execute simulations for several translational motion commands. At last, the effectiveness of the proposed method is verified by analyzing the simulation results.

Decentralized Adaptive Control Scheme for Magnetically Levitated Fine Manipulators (자기부상식 미세구동기의 비집중 적응제어기법)

  • Shin, Eun-Joo;Song, Tae-Seung;Ryu, Joon;Choi, Kee-Bong
    • Journal of IKEEE
    • /
    • v.3 no.2 s.5
    • /
    • pp.250-258
    • /
    • 1999
  • This paper presents a decentralized adaptive controller design for a Magnetically Levitated Fine Manipulator to follow the given trajectory as close as possible in spite of coupling effects between motion axes(degree of freedoms or subsystems). The present controller consists of two parts: the model reference controls based on known subsystems and the local adaptive controls. The former stabilizes the motion of the manipulator so as to follow that of the reference model. The latter reduces tracking errors due to coupling disturbances by adjusting the local gains to such levels that override interactions and assure the stability of the overall system. Through several experimental results, it has been shown that the decentralized adaptive control scheme has better tracking performances comparing to the PID controller case as well as good disturbance(coupling) rejection property.

  • PDF

Simulation of Time-Delay Based Path-Tracking Control of Reusable Launch Vehicle (시간지연기법을 적용한 재사용발사체 유도제어 시뮬레이션)

  • Cho, Woosung;Lee, HyeongJin;Lee, Yeol;Ko, Sangho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.627-636
    • /
    • 2021
  • This paper deals with a study for the guidance control of reusable launch vehicle. For this purpose, modeling of the equation of motion of a reusable launch vehicle with 6 degrees of freedom was performed. With this model, an optimal re-entry path was created and a path-following guidance control simulation was performed to follow the optimal re-entry path. For the design of the path-following guidance controller, the attitude controller applying a time-delay technique that is resistant to modeling uncertainty, disturbance and failure. And the nonlinear path-following guidance law were used. Guidance control simulation using a classical PD controller was performed and compared with the guidance control simulation of a reusable launch vehicle applying a time delay technique.