• Title/Summary/Keyword: 경로추종

Search Result 160, Processing Time 0.033 seconds

A Study on the Path Tracking Performance of Lunar Lander Demonstrator using a PWM-based Thrust Controller (펄스폭 변조기 기반 추력 제어기를 이용한 달 착륙선 지상시험모델의 경로 추종 성능 연구)

  • Yang, Sung-Wook;Son, Jong-Jun;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.4
    • /
    • pp.75-80
    • /
    • 2014
  • A lunar lander demonstrator developed for the purpose of demonstrating lunar landing technologies recently in Korea. The thruster control system of the lunar lander demonstrator adopted the main thrusters for altitude control and the reaction thrusters for attitude control. In this paper, we propose a path tracking controller base on Euler angles. The control signals of the controller are of continuous type. And Pulse Width Modulator(PWM) is adopted to provide On/Off signals. We perform MATLAB simulation for evaluating the path tracking performance and the final landing velocity of the lunar lander demonstrator.

Full Dynamic Model in the Loop Simulation for Path Tracking Control of a 6$\times$6 Mobile Robot (6$\times$6 이동로봇의 경로추종을 위한 동역학 시뮬레이션)

  • Huh, Jin-Wook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.141-148
    • /
    • 2008
  • In this paper, we develop a detailed full dynamic model which includes various rough terrains for 6-wheel skid-steering mobile robot based on the real experimental autonomous vehicle called Dog-Horse Robot. We also design a co-simulation for performance comparison of path tracking algorithms. The control architecture in the co-simulation can be divided into two levels. The high level control is the closed-loop control of path tracking to follow a given path, and the low level is concerned about torque control of wheel motion. The simulation using the mechanical data of the Dog-Horse Robot is performed under the Matlab/Simulink environment. We also simulate and evaluate the performance of the model based adaptive controller.

Path Tracking Control of 6X6 Skid Steering Unmanned Ground Vehicle for Real Time Traversability (실시간 주행 안정성 분석을 위한 6X6 스키드 조향 무인 자율 주행 차량의 경로 추종 제어)

  • Hong, Hyosung;Han, Jong-Boo;Song, Hajun;Jung, Samuel;Kim, Sung-Soo;Yoo, Wan Suk;Won, Mooncheol;Joo, Sanghyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.599-605
    • /
    • 2017
  • For an unmanned vehicle to be driven on the off-road terrain, it is necessary to consider the vehicle's stability. This paper suggests a path tracking controller for simulation of real-time vehicle stability analysis. The path tracking controller uses the preview distance to track the given trajectory. The disturbance moment is estimated using the yaw moment observer, and this information is used for compensation in the yaw moment control. On a curved path, the vehicle's desired velocity is determined from the curvature of the path. Because the vehicle is equipped with six independent motor driven wheels, the driving torques are distributed on all the wheels. The effectiveness of the path tracking controller is verified using ADAMS/MATLAB co-simulation.

Efficient 3-D Near-field Source Localization Algorithm Using Uniform Circular Array (환형배열센서를 이용한 근거리 표적의 효율적인 3차원 위치추정 알고리즘)

  • 이정훈;박규태;박도현;이균경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.214-220
    • /
    • 2004
  • A computationally efficient algorithm is presented for 3-D near-field source localization using a uniform circular away (UCA). Algebraic relations are demonstrated between the incident angles (elevation angle and azimuth angle) under the far-field assumption and the actual near-field location (range. elevation angle, and azimuth angle). Using these relations as paths to follow to the peak of the 3-D MUSIC spectrum, the proposed algorithm replaces the 3-D search required in the conventional 3-D MUSIC with a 1-D path following after a 2-D initialization. thereby reducing the computational burden.

Vector field-based Heuristic Function for A* Path Planning of Nonholonomic Mobile Robot (Nonholonomic 모바일 로봇의 A* 경로 계획을 위한 벡터장 기반 Heuristic 함수 제안)

  • Lee, Kwang-Hyun;Ryu, Jee-Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1305-1308
    • /
    • 2015
  • 모바일 로봇의 경로 계획의 경우 주로 위치로 표현되는 2차원 공간 상에서 현재 위치에서 목표 위치까지 모바일 로봇이 도달하도록 경로를 계획한다. 그러나 nonholonomic 구조를 가지는 모바일 로봇의 경우 기구학적 제약에 의해 추종 불가능한 경로가 존재하게 된다. 또한 nonholonomic 모바일 로봇은 진행 방향을 포함한 3차원 공간 상에서의 경로 계획이 이루어져야 한다. 모바일 로봇의 경로 계획 알고리즘으로는 A* 경로 계획 알고리즘이 주로 사용되는데, A* 경로 계획 알고리즘은 경로 계획 시 현재 위치에서부터 노드를 확장시켜 가며 경로를 탐색한다. 이 때 각 노드로부터 목표 위치까지의 비용을 계산하기 위해 heuristic 함수가 사용된다. 기존의 A* 경로 계획 알고리즘의 경우 Euclidean 거리에 기반한 heuristic 함수가 사용되었으나, 이 경우 모바일 로봇의 진행 방향은 고려하지 않아, 로봇의 목표 위치에 도말만 할 뿐 목표 방향으로의 도달은 보장 할 수 없다. 본 논문에서는, A* 경로 계획 알고리즘을 통해 nonholonomic 모바일 로봇이 목표 위치에 목표 방향에 맞추어 도달할 수 있도록 경로 생성이 이루어지는 heuristic 함수를 제안하고, 시뮬레이션을 통해 그 성능을 검증한다.

Backward Path Tracking Control of a Trailer Type Vehicle Using a RCGA Based Parameter Estimation (RCGA 기반의 파라미터 추정 기법을 이용한 트레일러형 차량의 후방경로 추종제어)

  • 위용욱;하윤수;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.124-130
    • /
    • 2001
  • This paper presents a methodology on automation of a trailer type vehicle which consists of two parts: a tractor and a trailer. Backward moving and parking control is very important to automate this type of vehicle. It is difficult to control the motion such a trailer vehicle whose dynamics in non-holonomic. Therefore, in this paper, the modeling and parameter estimation of the system using a RCGA(real-coded genetic algorithm) is proposed and a backward path tracking control algorithm is then obtained. The simulation results verify the effectiveness of the proposed method.

  • PDF

A Study on the Backward Path Tracking Control of the Trailer Type Vehicle (트레일러형 차량의 후방경로추종제어에 관한 연구)

  • 백운학
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.11-15
    • /
    • 2000
  • This paper provides a basic study on automatic of a trailer type vehicle which consists of two parts such as a tractor and a trailer Backward moving and parking control is very important to automate this type of vehicle. However it is very difficult to control such their motion since a trailer type vehicle is a non-holonomic system. Therefore in this paper we propose the backward path tracking control algorithm for a trailer type vehicle. And also this paper presents the results of simulation to verify the effectiveness of the proposed control algorithm.

  • PDF

Formation Control for Swarm Robots Using Artificial Potential Field (인공 포텐셜 장을 이용한 군집 로봇의 대형 제어)

  • Kim, Han-Sol;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.476-480
    • /
    • 2012
  • In this paper, artificial potential field(APF) is applied to formation control for the leader-following swarm robot. Furthermore, APF is constructed by applying the electrical field model. Moreover, to model the obstacle effectively, each obstacle has different form due to the electrical field equation. The proposed method is formed as two sub-objective: path planning for the leader-robot and following-robots following the leader-robot. Finally, simulation example is given to prove the validity of proposed method.

Path Tracking Control for a Wheeled Mobile Robot using Fuzzy Algorithm (퍼지 알고리즘을 이용한 차륜형 이동로봇의 경로추종제어)

  • 하윤수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.731-737
    • /
    • 1999
  • This paper describes the path tracking control for a mobile robot which has two casters at the front and rear to keep balance and two driving wheels on the left and right sides of its body. Power wheeled steering method is adapted to control heading of the robot. It is very difficult to find appropriate feedback gains when linear regulator control scheme is adapted to path tracking con-trol of this type of robot. Therefore in this paper we propose the path tracking control algorithm using the fuzzy logic control scheme for this type of root. Simulation to prove the validity of the proposed two algorithms is performed. The results are reported as last part in this paper.

  • PDF