• Title/Summary/Keyword: 경로선택 모델링

Search Result 39, Processing Time 0.033 seconds

Performance of Opportunistic Incremental NOMA Relay System in Fading Channels (페이딩 채널에서 기회전송 증가 NOMA 릴레이 시스템의 성능분석)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.69-76
    • /
    • 2016
  • In this paper, we investigate the system performance of a cooperative relaying system of Non-orthogonal multiple access (NOMA) with successive interference cancellation (SIC), which is considered promising application in fifth generation (5G) cellular networks. Previous studies have focused on the selected relays, however we include the maxmin relay selection and derive analytical outage probability of opportunistic incremental relaying systems. For the realistic mobile environment, the distributions of relays are modeled as a homogeneous Poisson point process (PPP). And maximal ratio combining (MRC) is adapted to improve the system performance at the destination node. Analytical results demonstrate the outage probability improves with the near/far user power ratio, and the cooperative relaying scheme can achieve low outage probability in comparison to the no relaying scheme. It is also conformed that the increase of the intensity of PPP cause higher gains of the spacial diversity and hence the performance improves.

Reaction Path Modeling of Granitic Cultural Properties and Its Implication for Preservation (화강암질 석조문화재의 풍화반응경로 특성과 보존에 대한 제언)

  • Park Maeng-Eon;Sung Kyu-Youl
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.83-92
    • /
    • 2005
  • Dissolution rate of minerals may differ from climates configuration, but weathering rate of feldspars is generally proved to be relatively higher The result of geochemical reaction modeling indicates the acid water of pH 4.5 excluding any other variables, was 2.3 times higher than that in ordinary rain of pH 5.7. This result proved that pH is very important factor in preservation of granite cultural properties. To prevent the weathering of stone cultural properties, weathering characteristics of stones should be studied first and constitution of dry environments, using water repellent or oil coating, isolating water which cause chemical weathering reaction like hydration and oxidization should be considered. Considering the long-term reactions between granite and rain, selection of materials, which can bring neutralization and non-oxidization conditions, are very important in using cleaning agents and biological controls.

Designing Operational Effectiveness of Autonomously Decided Countermeasures (자율적으로 결정한 대응기법의 운용효과도 설계)

  • Park, So-Ryoung;Park, Hun-Woo;Ha, Ji-Su;Choi, Chae-Taek;Jeong, Un-Seob;Noh, Sang-Uk
    • Journal of Internet Computing and Services
    • /
    • v.13 no.4
    • /
    • pp.11-21
    • /
    • 2012
  • It is indispensable that aircrafts in electrical warfare settings endeavour to improve their survivability by selecting optimal countermeasures against threats. In this paper, we model the successful probabilities of aircraft survivability equipments that remove threats encountered, and also propose a framework for the aircrafts to autonomously decide their countermeasures. And then, we design the operational effectiveness of the aircraft survivability equipments, and quantitatively formulate the operational effectiveness into the form of reduction in lethality (RL). We actually show how the operational effectiveness can be computed in simulated example scenarios. To verify our framework proposed in this paper, we experimented with the successful probabilities of aircraft survivability equipments and the autonomous decision-making against threats in various electronic warfare settings. In the experiments, it turns out that our agents outperform the agents that randomly choose their countermeasures, which is 12% more efficient in their performance.

Computational Chemistry Study of CO2 Fixation and Cyclic Carbonate Synthesis Using Various Catalysts (촉매를 이용한 이산화탄소 고정화 및 고리형 카보네이트 합성반응에 대한 계산화학적 해석)

  • An, Hye Young;Kim, Min-Kyung;Jeong, Hui Cheol;Eom, Ki Heon;Won, Yong Sun
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.35-44
    • /
    • 2016
  • In this study, a computational chemistry methodology called as molecular modeling was been applied to explain several experiment results mechanistically. The reaction chosen for this study was to remove carbon dioxide, known as a primary greenhouse gas, by an epoxide via the carbon dioxide fixation to produce carbonates. This reaction inherently needs the use of catalysts because it has a significantly high activation barrier (55~59 kcal/mol). Among various types of catalysts, we studied in zeolitic imidazolate framework 90 (ZIF-90)/ionic liquid immobilized ZIF-90 (IL-ZIF-90), polystyrene-supported quaternized ammonium salt, KI/KI-glycine, and dimethylethanolamine (DMEA). First, probable reaction pathways were proposed based on calculated energetics by computational chemistry. The energetics was then used for the thermodynamic interpretation on the activity of catalysts. In the case of ZIF-90/IL-ZIF-90 and KI/KI-glycine, IL-ZIF-90 and KI-glycine showed better yields compared to their counterparts. The calculation proposed interesting results that it is not from the lowering of activation energy but from the unstable intermediates of ZIF-90 and KI-glycine. For DMEA, the calculated activation energy was ~42 kcal/mol, much lower than that of the non-catalytic reaction. A possible reaction pathway was located to confirm the interaction between −NH group from ammonium and oxygen from epoxide for polystyrene-supported quaternized ammonium salt.

Risk Assessment of Arsenic by Human Exposure of Contaminated Soil, Groundwater and Rice Grain (오염된 토양, 지하수 및 쌀의 인체노출에 따른 비소의 위해성 평가)

  • Lee Jin-Soo;Chon Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.535-545
    • /
    • 2005
  • Environmental survey from some abandoned metal mine areas was undertaken on to assess the risk of adverse health effects on human exposure to arsenic influenced by past Au-Ag mining activities. Elevated levels of As were found in tailings from the studied mine areas. This high concentration may have a impact on soils and waters around the tailing piles. In order to perform the human risk assessment, chemical analysis data of soils, rice grains and waters fur As have been used. The HQ values fer As via the rice grain and groundwater consumption were significantly higher compared with other exposure pathways in all metal mine areas. However, there were minimal soil and water dermal contact risks. The resulting Hl values of As from the Dongil, Okdong and Hwacheon mine areas were higher than 5.0, and their toxic risk due to drinking water and rice grain was strong in these mine areas. The cancer risk of being exposed to As by the rice grain route from the Dongil, Okdong and Hwacheon mine areas was $5.2\times10^{-4},\;6.0\times10^{-4}\;and\;8.1\times10^{-4}$, respectively. The As cancer risk via the exposure pathway of drinking water from these mine areas exceeded the acceptable risk of 1 in 10,000 fer regulatory purposes. Thus, the daily intakes of groundwater and rice grain by the local residents from the Dongil, Okdong and Hwacheon mine areas can pose a potential health threat if exposed by long-term arsenic exposure.

Dynamic Behavior of Reactor Internals under Safe Shutdown Earthquake (안전정기지진하의 원자로내부구조물 거동분석)

  • 김일곤
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.95-103
    • /
    • 1994
  • The safety related components in the nuclear power plant should be designed to withstand the seismic load. Among these components the integrity of reactor internals under earthquake load is important in stand points of safety and economics, because these are classified to Seismic Class I components. So far the modelling methods of reactor internals have been investigated by many authors. In this paper, the dynamic behaviour of reactor internals of Yong Gwang 1&2 nuclear power plants under SSE(Safe Shutdown Earthquake) load is analyzed by using of the simpled Global Beam Model. For this, as a first step, the characteristic analysis of reactor internal components are performed by using of the finite element code ANSYS. And the Global Beam Model for reactor internals which includes beam elements, nonlinear impact springs which have gaps in upper and lower positions, and hydrodynamical couplings which simulate the fluid-filled cylinders of reactor vessel and core barrel structures is established. And for the exciting external force the response spectrum which is applied to reactor support is converted to the time history input. With this excitation and the model the dynamic behaviour of reactor internals is obtained. As the results, the structural integrity of reactor internal components under seismic excitation is verified and the input for the detailed duel assembly series model could be obtained. And the simplicity and effectiveness of Global Beam Model and the economics of the explicit Runge-Kutta-Gills algorithm in impact problem of high frequency interface components are confirmed.

  • PDF

Iguana motion synthesis using soft body simulation (연체 시뮬레이션 기반 이구아나 동작 생성)

  • Moon, Jaeseok;Kwon, Taesoo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • In this paper, we suggest a method to simulate high-quality iguana animation by using low-quality motion capture data. Iguana motion data captured using a small number of markers cannot express its movement precisely, and even with a realistic skin mesh, it shows unnatural movement because of limited degrees of freedom. In order to solve this problem, we propose to simulate a natural and flexible movement by applying a soft-body simulation technique which models the movement of an iguana according to muscle forces and body's elastic forces. We construct a motion graph from the motion capture data to describe the iguana's various movements, and utilize it to select appropriate movements when the iguana moves. A target point on a terrain is set from the user's input, and a graph path is planned based on it. As a result, the input movement of iguana walking on a flat ground transforms to a movement that is adapted in an online manner to the irregular heights of the terrain. Such a movement is used to calculate the ideal muscle lengths that are needed for soft-body simulation. Lastly, a tetrahedral mesh of the iguana is physically simulated to adapt to various situations by applying a soft-body simulation technique.

Development of Dynamic Passenger-Trip Assignment Model of Urban Railway Using Seoul-Incheon-Gyeonggi's Transportation Card (대중교통카드기반 수도권 도시철도 통행수요배정모형)

  • Sohn, Jhieon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.105-114
    • /
    • 2016
  • With approximately 20 million transportation card data entries of the metropolitan districts being generated per day, application of the data to management and policy interventions is becoming an issue of interest. The research herein attempts a model of the possibility of dynamic demand change predictions and its purpose is thereby to construct a Dynamic Passengers Trip Assignment Model. The model and algorithm created are targeted at city rail lines operated by seven different transport facilities with the exclusion of travel by bus, as passenger movements by this mode can be minutely disaggregated through card tagging. The model created has been constructed in continuous time as is fitting to the big data characteristic of transport card data, while passenger path choice behavior is effectively represented using a perception parameter as a function of increasing number of transfers. Running the model on 800 pairs of metropolitan city rail data has proven its capability in determining dynamic demand at any moment in time, in line with the typical advantages expected of a continuous time-based model. Comparison against data measured by the eye of existing rail operating facilities to assess changes in congestion intensity shows that the model closely approximates the values and trends of the existing data with high levels of confidence. Future research efforts should be directed toward continued examination into construction of an integrated bus-city rail system model.

Performance Evaluation of Underwater Acoustic Communication in Frequency Selective Shallow Water (주파수 선택적인 천해해역에서 수중음향통신 성능해석)

  • Park, Kyu-Chil;Park, Jihyun;Lee, Seung Wook;Jung, Jin Woo;Shin, Jungchae;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.95-103
    • /
    • 2013
  • An underwater acoustic (UWA) communication in shallow water is strongly affected by the water surface and the seabed acoustical properties. Every reflected signal to receiver experiences a time-variant scattering in sea surface roughness and a grazing-angle-dependent reflection loss in bottom. Consequently, the performance of UWA communication systems is degraded, and high-speed digital communication is disrupted. If there is a dominant signal path such as a direct path, the received signal is modeled statistically as Rice fading but if not, it is modeled as Rayleigh fading. However, it has been known to be very difficult to reproduce the statistical estimation by real experimental evaluation in the sea. To give an insight for this scattering and grazing-angle-dependent bottom reflection loss effect in UWA communication, authors conduct experiments to quantify these effects. The image is transmitted using binary frequency shift keying (BFSK) modulation. The quality of the received image is shown to be affected by water surface scattering and grazing-angle-dependent bottom reflection loss. The analysis is based on the transmitter to receiver range and the receiver depth dependent image quality and bit error rate (BER). The results show that the received image quality is highly dependent on the transmitter-receiver range and receiver depth which characterizes the channel coherence bandwidth.