• Title/Summary/Keyword: 경량 재료

Search Result 714, Processing Time 0.022 seconds

Trend of Carbon Fiber-reinforced Composites for Lightweight Vehicles (자동차 경량화를 위한 탄소섬유강화 복합재료의 동향)

  • Kim, Ki-Seok;Bae, Kyong-Min;Oh, Sang-Yeob;Seo, Min-Kang;Kang, Chang-Gi;Park, Soo-Jin
    • Elastomers and Composites
    • /
    • v.47 no.1
    • /
    • pp.65-74
    • /
    • 2012
  • Recently, the need of developing eco-friendly materials has been required with restriction strengthening on environment and energy saving by the resource depletion worldwide. These trends are not an exception in transport industry including automobile. In addition, these materials have to fulfill not only the high quality and cheap price but also the high-performance which meet the needs of costumer and society. Among the various materials, carbon fiber-reinforced composite which is actively studying for lightweight of the automobile is one of the most suitable candidates. Indeed, the carbon fiber-reinforced composites are used as the essential materials to substitute body and other parts in automobile and the demand is increasing largely. Carbon fiber-applied automobile has improved brake, steering, durability and high fuel efficiency, leading to the energy conservation and minimizing carbon dioxide emissions. This paper focuses on the necessity of carbon fiber-reinforced composites for lightweight of automobile and its technical trends.

Automotive Door Impact Beam Development using Thermoplastic Composite (열가소성 복합재 적용 자동차 도어 임팩트 빔 개발)

  • Kim, Won-Seock;Kim, Kyung-Chul;Jung, Woo-Cheol;Kim, Hwa-nam
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.383-389
    • /
    • 2020
  • Thermoplastic composite is introduced to design an automotive door impact beam, and the manufacturing process is demonstrated. The safety regulation for vehicles has been steadily tightened, and weight-reduction has become a mandatory factor in the automotive industry. Hence, both high-performance and lightweight are demanded for automotive components. The aim of the present study is to develop an automotive door impact beam using fiber-reinforced thermoplastic composites to reduce the weight of the impact beam while increasing its mechanical performance. A new production method which combines continuous fiber-reinforced composite and LFT(Long Fiber-reinforced Thermoplastic) is implemented by using insert injection molding process. The mechanical performance of the composite impact beam was evaluated using 3-point bending tests. Thermoplastic composite will expand its application range to various automotive components due to its light-weight design capability and high productivity.

Automotive Polymer Composite Materials -Sheet Molding Compound- (자동차용 열경화성 고분자복합재료 -SMC를 중심으로-)

  • 조봉규
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.63-73
    • /
    • 1996
  • CAFE(기업평균연비) 규제의 적극적 대응책의 하나로 차체 경량화가 주목받고 있다. 이를 위해 사용되는 고분자 복합소재 중 특히 Exterior Body Panel에 많이 채택되고 있는 SMC(Sheet Molding Compound)에 대해 제조방법, 성형공정, 기술적 과제, 재활용, 적용 예 등을 살펴보았다. 1973년 GM의 Corvette로부터 본격적으로 사용되기 시작한 SMC는 미국, 유럽을 중심으로 사용량이 계속 증가되고 있으며, 자동화가 용이하고 성형Cycle이 짧아 타 열경화성 고분자복합재료 성형방법에 비해 대량생산에 유리하며, 도장 특성이 우수하며 자 동차 부품용으로 가장 보편적인 방식이다.

Design and manufacturing technique for a curved composite actuator, LIPCA with improved actuation force and displacement (향상된 작동력 및 변형량을 갖는 곡면형 복합재 작동기(LIPCA) 설계 및 제조기법)

  • 윤광준;박훈철;신석준;김주식
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.135-138
    • /
    • 2000
  • 본 논문에서는 열팽창계수(CTE)가 거의 없는 카본게폭시, PZT 세라믹 박판, 그리고 열팽창계수가 큰 글래스/에폭시 층으로 이루어진 곡면형 복합재료 작동기(LIPCA)의 설계, 제작 및 성능실험에 대한 연구성과를 제시하고 있다. LIPCA의 른 요점은 기존 THUNDER의 성능을 유지하면서 이를 경량화 하기 위하여 THUNDER의 금속 층을 상대적으로 가벼운 섬유 강화 복합재료로 대체하는 것이다. 이러한 경량화 작업으로 LIPCA는 기존 THUNDER 보다 약 30~40% 정도의 무게를 감소시킬 수 있으며, 복합재료의 특성에 따라 설계의 유연성을 가질 수 있는 장점이 있다. 또한, 에폭시 수지를 사용함으로써 접착제 없이 평판 몰드에서 오토클레이브에서 177$^{\circ}C$로 경화되어, 탈형된 후 충분한 곡률을 형성하였다. 작동 성능 실험에서, LIPCA는 기존 THUNDER보다 작동변위가 향상됨을 보였다.

  • PDF

박막절연재료의 근황

  • Cho, Cheol
    • 전기의세계
    • /
    • v.13 no.2
    • /
    • pp.34-37
    • /
    • 1964
  • 전기기구의 소형 경량화 및 그 전기특성의 개선을 위하여 박막절선재료에 대한 요구는 최근 매우 높아져서 아주 얇으며 그리고 절연내력이 좋고 내열성 등이 양호한 것이 소망되고 있으며 이를 위하여 여러가지 종류의 재료가 개발 연구되고 있다. 여기서는 기중 종래의 재료에 대신하여 각각의 특징에 따라 사용되고 있는 몇가지 재료에 대하여 기술한다.

  • PDF

Technique Status of Carbon Fibers-reinforced Composites for Aircrafts (항공기용 탄소섬유강화 복합재료의 기술동향)

  • Kim, Ki-Seok;Park, Soo-Jin
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.118-124
    • /
    • 2011
  • Recently, the need of new materials which have excellent physical properties and functional characteristics has been increased in all industries. In particular, body weight reduction via new materials in aerospace industry was significantly emphasized by the requirement of environmental protection through the fuel savings and reduction of greenhouse gas, i.e., carbon dioxide($CO_2$). Also, for various applications, the development of high performance custom materials with excellent physical properties was the current primary goal of materials science and technology. In this respect, carbon fiber-reinforced composites were the most candidates among the various materials. Indeed, carbon fiber-reinforced composites have been lately used as essential materials for the weight reduction of aircraft and the demand has increased remarkably. Therefore, in this paper, we focused on the need of carbon fiber composites in the fields of aircraft and technique status.

Using Topology Optimization, Light Weight Design of Vehicle Mounted Voltage Converter for Impact Loading (위상 최적화 기법을 이용한 충격하중에 대한 차량 탑재형 전력변환장치의 마운트 경량화 설계)

  • Ko, Dong-Shin;Lee, Hyun-Kyung;Hur, Deog-Jae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.353-358
    • /
    • 2018
  • In this study, it is describe to an optimization analysis process for the weight reduction of the voltage converter in the electric vehicle charging systems. The optimization design is a technique that finds the optimal material distribution under a given material quantity constraint by combining the design sensitivity with the material properties and the mathematical optimization. Among the topology optimization, a lightweight design is performed by a solid isotropic material with penalization with simple formula and well-convergence. The lightweight design consists of three steps. As a first step, a finite element model for the basic design of the on-board voltage converter was constructed and static analysis was performed on the load. In the second step, the optimum shape is obtained for the lightweight by performing the topology optimization using the solid isotropic material with penalization applying the stiffness coefficient of the isotropic material to the static analysis result. As a final step, impact analysis was performed by applying a half-sinusoidal pulse shape impact load which satisfies the impact test standard of the vehicle-mounted part with respect to the optimum shape. In the topology optimization, the design domain was defined as the mounting bracket area, and the design technology was finally achieved by optimizing the mounting bracket to achieve a weight reduction of 20% over the basic design.