• Title/Summary/Keyword: 경량 골재 콘크리트

Search Result 234, Processing Time 0.027 seconds

An Experimental Study on the Mechanical Properties of Lightweight Aggregate Concrete subjected to Pre-stressed and Heating (사전재하 및 가열을 받은 경량골재콘크리트의 역학적 특성에 관한 실험적 연구)

  • Lee, Hyoung-Jun;Shin, Kyoung-Su;Lim, Chang-Hyuck;Koo, Kyung-Mo;Kim, Young-Sun;Kim, Gyu-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.361-362
    • /
    • 2009
  • In this study, measured properties(which is compressive strength, elastic modulus) of concrete by conditions(which is aggregate type, pre-stressed level) using normal aggregate and lightweight aggregate.

  • PDF

An Experimental Study on the Physical Properties of Lightweight Concrete according to Aggregate Union (골재조합에 따른 경량콘크리트의 물리적 특성에 관한 실험적 연구)

  • Kim, Jung-Ho;Kim, Se-Hwan;Sa, Sun-Heon;Ji, Suk-Won;Choi, Soo-Kyung;Seo, Chee-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.225-226
    • /
    • 2010
  • On this study, Aggregate union by various admixtures which is one of the methods to improve concrete performance has contributed to improvement of concrete strength and durability.

  • PDF

Investigation of Electrical Resistance Properties in Surface-Coated Lightweight Aggregate (표면코팅 경량골재의 전기저항 특성)

  • Kim, Ho-Jin;Kim, Chang-Hyun;Choi, Jung-Wook;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.727-738
    • /
    • 2023
  • In concrete, the interface between the aggregate and cement paste is often the most critical factor in determining strength, representing the weakest zone. Lightweight aggregate, produced through expansion and firing of raw materials, features numerous surface pores and benefits from low density; however, its overall aggregate strength is compromised. Within concrete, diminished aggregate strength can lead to aggregate fracture. When applying lightweight aggregate to concrete, the interface strength becomes critical due to the potential for aggregate fracture. This study involved coating the surface of the aggregate with blast furnace slag fine powder to enhance the interfacial strength of lightweight aggregate. The impedance of test specimens was measured to analyze interface changes resulting from this surface modification. Experimental results revealed a 4% increase in compressive strength following the coating of the lightweight aggregate surface, accompanied by an increase in resistance values within the impedance measurements corresponding with strength enhancement.

Analysis on Anisotropy of Void Distribution and Stiffness of Lightweight Aggregate using CT Images (CT 이미지를 활용한 경량 골재의 방향에 따른 공극 분포 및 강성도의 이방성 분석)

  • Chung, Sang-Yeop;Han, Tong-Seok;Yun, Tae Sup;Youm, Kwang Soo;Jeon, Hyun-Gyu;Kang, Dong Hun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.227-235
    • /
    • 2012
  • The void distribution in concrete materials strongly affects its material properties. Therefore, the identification of spatial distribution of void is important to understand and estimate material behavior. To examine and quantify the void distribution inside lightweight aggregates, CT(computed tomography) image is used. 3D lightweight aggregate images are generated by stacking of cross-sectional images from CT. Spatial distribution of void of aggregate along the direction is visualized on the sphere using probability distribution function. Stiffness of lightweight aggregate for the directions is also examined. It is confirmed that direction-based probability distribution and stiffness from CT images are effective in characterizing void distributions of aggregates.

A Study on the Mechanical Properties of Interfacial Transition Zone (ITZ) of Lightweight High Strength Concrete Via Nanoindentation (나노 인덴테이션을 통한 경량 고강도 콘크리트 Interfacial Transition Zone (ITZ)의 역학적 특성에 관한 연구)

  • Im, Su-Min;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.537-544
    • /
    • 2020
  • The interfacial transition zone(ITZ) which is the boundary layer between cement composites and aggregates is considered to be the region of gradual transition, heterogeneous, and the weakest part of concrete. For the development of lightweight high strength concrete, it is essential to evaluate the mechanical properties of ITZ between high strength concrete with low water-binder ratio and lightweight aggregates. However, the mechanical properties of ITZ are not well established due to its high porosity and complex structure. Furthermore, the properties of ITZ in concrete using lightweight aggregates are dominated by more various variations (e.g. water-binder ratio, water absorption capacity of aggregate, curing conditions) than normal-weight aggregate concrete. This study aims to elucidate the mechanical properties of ITZ in lightweight high-strength cement composites according to the types of aggregates and the aggregate sizes. Nanoindentation analysis was used to evaluate the elastic modulus of ITZ between high strength cement composites with the water-binder ratio of 0.2 and normal sand, lightweight aggregate with different aggregate siz es of 2mm and 5mm in this study.

Mixture Proportioning Approach for Low-CO2 Lightweight Aggregate Concrete based on the Replacement Level of Natural Sand (천연모래 치환율에 기반한 저탄소 경량골재 콘크리트 배합설계 모델)

  • Jung, Yeon-Back;Yang, Keun-Hyeok;Tae, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.427-434
    • /
    • 2016
  • The purpose of this study is to propose a mixture proportioning approach based on the replacement level of natural sand for reducing $CO_2$ emissions from artificial lightweight aggregate concrete(LWAC) production. To assess the effect of natural sand on the reduction of $CO_2$ emissions and compressive strength of LWAC, a total of 379 specimens compiled from different sources were analyzed. Based on the non-linear regression analysis using the database and the previous mixture proportioning method proposed by Yang et al., simple equations were derived to determine the concrete mixture proportioning and the replacement level of natural sand for achieving the targeted performances(compressive strength, initial slump, air content, and $CO_2$ reduction ratio) of concrete. Furthermore, the proposed equations are practically applicable to straightforward determination of the $CO_2$ emissions from the provided mixture proportions of LWAC.

Properties of Concrete Panel Made by Light Weight Aggregates (인공경량골재로 제조된 콘크리트 패널의 물성)

  • 엄태호;김유택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.221-228
    • /
    • 2004
  • Basic properties of artificial lightweight aggregate by using waste dusts and strength properties of LWA concrete were studied. Bulk specific gravity and water absorption of artificial lightweight aggregates varied from 1.4 to 1.7 and 13 to 16%, respectively. Crushing ratio of artificial lightweight aggregate was above 10% higher than that of crushed stone or gravel. As a result of TCLP leaching test, the leaching amount of tested heavy metal element was below the leaching standard of hazardous material. Slump, compressive strength and stress-strain properties of LWA concrete made of artificial lightweight aggregate were tested. Concrete samples derived from LWA substitution ratio of 30 vol% and W/C ratio of 45 wt% showed the best properties overall. Thermal insulation and sound insulation characteristics of light weight concrete panel with the optimum concrete proportion were tested. Average overall heat transmission of 3.293W/㎡$^{\circ}C$ was observed. It was higher by about 15% than those of normal concrete made by crushed stone. Sound transmission loss of 50.9 ㏈ in frequency of 500 ㎐ was observed. It was higher by about 13% than standard transmission loss.

A Study on Moisture Transport of Artificial Lightweight Concrete (인공경량골재 콘크리트의 수분이동 특성에 관한 연구)

  • Lee, Chang Soo;Choi, Sang Hyun;Park, Jong Hyok;Kim, Young Ook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.373-384
    • /
    • 2009
  • For the first step on the quantitative evaluation of shrinkage reduction and differential shrinkage analysis of lightweight aggregate concrete, this study sets the moisture transport model of concrete by pre-absorbed water of porous lightweight aggregates and measured effective moisture diffusion coefficient, moisture capacity, degree of humidity supply and degree of humidity consumption by water binder ratio and aggregate type. The effective moisture diffusion coefficient in steady state caused by humidity difference between inside and outside of concrete had low value as low water-binder ratio. And in case of same water-binder ratio, effective moisture diffusion of mixtures used normal aggregates were lower than those used lightweight aggregates. To determine moisture store capability of concrete - moisture capacity, moisture contents were measured in 9 humidity conditions. As a result moisture contents of mixtures used lightweight aggregates was higher than mixtures used normal aggregates in all humidity conditions. This study measured lightweight aggregates' degree of humidity supply that applicable to normal atmospheric environment (above RH 50%) and made it quantitatively. Also amount of moisture release was set as a exponential function that represents a clear trend proportion to time and inverse proportion to humidity of the surroundings. As the result of measurement about degree of moisture consumption inside concrete following the internal consumption caused by cement hydration self-drying, it was showed that rapid decrease of humidity, around 10%, at early ages (7~10 days) when water-binder ratio is 0.3 and slow decrease around 5% and 1% when water-binder ratio is 0.4 and 0.5.

ITZ Analysis of Cement Matrix According to the Type of Lightweight Aggregate Using EIS (EIS를 활용한 경량골재 종류별 시멘트 경화체의 계면특성 분석)

  • Kim, Ho-Jin;Jung, Yoong-Hoon;Bae, Je-Hyun;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.498-505
    • /
    • 2020
  • Aggregate occupies about 70-85% of the concrete volume and is an important factor in reducing the drying shrinkage of concrete. However, when constructing high-rise buildings, it acts as a problem due to the high load of natural aggregates. If the load becomes large during the construction of a high-rise building, creep may occur and the ground may be eroded. Material costs increase and there are financial problems. In order to reduce the load on concrete, we are working to reduce the weight of aggregates. However, artificial lightweight aggregates affect the interface between the aggregate and the paste due to its higher absorption rate and lower adhesion strength than natural aggregates, affecting the overall strength of concrete. Therefore, in this study, in order to grasp the interface between natural aggregate and lightweight aggregate by type, we adopted a method of measuring electrical resistance using an EIS measuring device, which is a non-destructive test, and lightweight bone. The change in the state of the interface was tested on the outside of the material through a blast furnace slag coating. As a result of the experiment, it was confirmed that the electric resistance was about 90% lower than that in the air-dried state through the electrolyte immersion, and the electric resistance differs depending on the type of aggregate and the presence or absence of coating. As a result of the experiment, the difference in compressive strength depending on the type of aggregate and the presence or absence of coating was shown, and the difference in impedance value and phase angle for each type of lightweight aggregate was shown.